Externality and Hamilton-Jacobi equations

被引:2
|
作者
Loreti, P [1 ]
Caffarelli, GV [1 ]
机构
[1] Univ Roma La Sapienza, Dipartimento Metodi & Modelli Matemat Sci Applica, I-00161 Rome, Italy
来源
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS | 2004年 / 11卷 / 02期
关键词
externality; control theory; Hamilton-Jacobi-Bellman systems;
D O I
10.1007/s00030-003-1053-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The relationship between optimal control problems and Hamilton-Jacobi-Bellman equations is well known [9]. In fact the value function, defined as the infimum of the cost functional, satisfies in the viscosity sense an appropriate Hamilton-Jacobi-Bellman equation. In this paper we consider several control problems such that the cost functional associated to each problem depends explicitly on the value functions of the other problems. This leads to a system of Hamilton-Jacobi-Bellman equations. This is known, in economic context [14] cap XI, as an externality problem. In these problems may occur a lack of uniqueness of the value functions. We give conditions to ensure existence, uniqueness of the value functions and an implicit integral representation formula. Moreover, under uniqueness assumption, we prove that the variational solutions of the associated Hamilton-Jacobi system converge asymptotically to the value functions. We prove also an uniqueness theorem in the case of viscosity solutions of Hamilton-Jacobi-Bellman system.
引用
收藏
页码:123 / 136
页数:14
相关论文
共 50 条
  • [1] Externality and Hamilton-Jacobi equations
    Paola Loreti
    Giorgio Vergara Caffarelli
    Nonlinear Differential Equations and Applications NoDEA, 2004, 11 : 123 - 136
  • [2] Systems of Hamilton-Jacobi equations
    Cambronero, Julio
    Perez Alvarez, Javier
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2019, 26 (04) : 650 - 658
  • [3] Relaxation of Hamilton-Jacobi equations
    Ishii, H
    Loreti, P
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2003, 169 (04) : 265 - 304
  • [4] Hypercontractivity of Hamilton-Jacobi equations
    Bobkov, SG
    Gentil, I
    Ledoux, M
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2001, 80 (07): : 669 - 696
  • [5] Systems of Hamilton-Jacobi equations
    Julio Cambronero
    Javier Pérez Álvarez
    Journal of Nonlinear Mathematical Physics, 2019, 26 : 650 - 658
  • [6] Relaxation of Hamilton-Jacobi Equations
    Hitoshi Ishii
    Paola Loreti
    Archive for Rational Mechanics and Analysis, 2003, 169 : 265 - 304
  • [7] On vectorial Hamilton-Jacobi equations
    Imbert, C
    Volle, M
    CONTROL AND CYBERNETICS, 2002, 31 (03): : 493 - 506
  • [8] STOCHASTIC HOMOGENIZATION OF HAMILTON-JACOBI AND "VISCOUS"-HAMILTON-JACOBI EQUATIONS WITH CONVEX NONLINEARITIES - REVISITED
    Lions, Pierre-Louis
    Souganidis, Panagiotis E.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2010, 8 (02) : 627 - 637
  • [9] Minimax solutions to the Hamilton-Jacobi equations
    Subbotin A.I.
    Journal of Mathematical Sciences, 2001, 103 (6) : 772 - 777
  • [10] Hamilton-Jacobi Equations on Graph and Applications
    Yan Shu
    Potential Analysis, 2018, 48 : 125 - 157