A new generalized log-logistic Erlang truncated exponential distribution with applications

被引:2
作者
Oluyede, Broderick [1 ]
Jimoh, Hameed A. [1 ]
Wanduku, Divine [1 ]
Makubate, Boikanyo [2 ]
机构
[1] Georgia Southern Univ, Dept Math Sci, Statesboro, GA 30460 USA
[2] Botswana Int Univ Sci & Technol, Dept Math & Stat Sci, Palapye, Botswana
关键词
Marshall-Olkin; Generalized distribution; Erlang Truncated Exponential distribution; Maximum Likelihood Estimation; WEIBULL DISTRIBUTION; MARSHALL; FAMILY;
D O I
10.1285/i20705948v13n2p293
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We introduce a new distribution via the Marshall-Olkin generator called the Marshall-Olkin Log-logistic Erlang-Truncated Exponential (MOLLoGETE) distribution. Some structural properties of the distribution including series expansion of the density function, sub-models, hazard function, moments, conditional moments, mean deviations, distribution of order statistics, Renyi entropy and maximum likelihood estimates are presented. The new density function is an infinite linear combinations of Burr XII-Erlang-Truncated Exponential distributions. The new generalization is applied to real data sets to evaluate the model performance.
引用
收藏
页码:293 / 349
页数:57
相关论文
共 21 条
[1]  
[Anonymous], 2006, J. Probab. Stat. Sci.
[2]  
[Anonymous], 1983, Graphical Methods for Data Analysis, DOI DOI 10.1201/9781351072304
[3]  
[Anonymous], 2014, Table of Integrals, Series, and Products
[4]  
[Anonymous], 2014, R LANG ENV STAT COMP
[5]   General results for the Marshall and Olkin's family of distributions [J].
Barreto-Souza, Wagner ;
Lemonte, Artur J. ;
Cordeiro, Gauss M. .
ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2013, 85 (01) :3-21
[6]   A GENERAL-PURPOSE APPROXIMATE GOODNESS-OF-FIT TEST [J].
CHEN, GM ;
BALAKRISHNAN, N .
JOURNAL OF QUALITY TECHNOLOGY, 1995, 27 (02) :154-161
[7]  
Cordeiro G.M., 2011, Statistics Papers, V54, P333
[8]  
El-Alosey A. R., 2007, Int. J. Stat. Syst, V2, P49
[9]   Lindley distribution and its application [J].
Ghitany, M. E. ;
Atieh, B. ;
Nadarajah, S. .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2008, 78 (04) :493-506
[10]   Marshall-Olkin extended Weibull distribution and its application to censored data [J].
Ghitany, ME ;
Al-Hussaini, EK ;
Al-Jarallah, RA .
JOURNAL OF APPLIED STATISTICS, 2005, 32 (10) :1025-1034