Stability of parabolic Harnack inequalities on metric measure spaces

被引:88
作者
Barlow, Martin T. [1 ]
Bass, Richard F.
Kumagai, Takashi
机构
[1] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[2] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
[3] Kyoto Univ, Math Sci Res Inst, Kyoto 6068502, Japan
关键词
Harnack inequality; volume doubling; Green functions; Poincare inequality; Sobolev inequality; rough isometry; anomalous diffusion;
D O I
10.2969/jmsj/1149166785
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (X, d, mu) be a metric measure space with a local regular Dirichlet form. We give necessary and sufficient conditions for a parabolic Harnack inequality with global space-time scaling exponent beta >= 2 to hold. We show that this parabolic Harnack inequality is stable under rough isometrics. As a consequence, once such a Harnack inequality is established on a metric measure space, then it holds for any uniformly elliptic operator in divergence form on a manifold naturally defined from the graph approximation of the space.
引用
收藏
页码:485 / 519
页数:35
相关论文
共 63 条
[1]   BOUNDS FOR FUNDAMENTAL SOLUTION OF A PARABOLIC EQUATION [J].
ARONSON, DG .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (06) :890-&
[2]  
BARLOW M, 1989, LECT NOTES MATH, V1372, P275
[3]   Manifolds and graphs with slow heat kernel decay [J].
Barlow, M ;
Coulhon, T ;
Grigor'yan, A .
INVENTIONES MATHEMATICAE, 2001, 144 (03) :609-649
[4]  
Barlow M., 1998, LECT NOTES MATH, V1690, P1
[5]   Divergence form operators on fractal-like domains [J].
Barlow, MT ;
Bass, RF .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 175 (01) :214-247
[6]   Characterization of sub-Gaussian heat kernel estimates on strongly recurrent graphs [J].
Barlow, MT ;
Coulhon, T ;
Kumagai, T .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (12) :1642-1677
[7]   Stability of parabolic Harnack inequalities [J].
Barlow, MT ;
Bass, RF .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (04) :1501-1533
[8]   TRANSITION DENSITIES FOR BROWNIAN-MOTION ON THE SIERPINSKI CARPET [J].
BARLOW, MT ;
BASS, RF .
PROBABILITY THEORY AND RELATED FIELDS, 1992, 91 (3-4) :307-330
[9]   Brownian motion and harmonic analysis on Sierpinski carpets [J].
Barlow, MT ;
Bass, RF .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1999, 51 (04) :673-744
[10]   BROWNIAN-MOTION ON THE SIERPINSKI GASKET [J].
BARLOW, MT ;
PERKINS, EA .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 79 (04) :543-623