A semi-analytical model for the thermal conductivity of nanofluids and determination of the nanolayer thickness

被引:62
作者
Tso, C. Y. [1 ]
Fu, S. C. [1 ]
Chao, Christopher Y. H. [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Mech & Aerosp Engn, Kowloon, Hong Kong, Peoples R China
关键词
Effective thermal conductivity; Heat conduction; Mathematical model; Nanofluids; Nanolayer; Nanoparticles; HEAT-TRANSFER; SUSPENSIONS; FLUID; DIFFUSIVITY; ENHANCEMENT; VISCOSITY; TRANSPORT; FLOW;
D O I
10.1016/j.ijheatmasstransfer.2013.10.077
中图分类号
O414.1 [热力学];
学科分类号
摘要
Nanofluid shows a huge potential to be the next-generation heat transfer fluid since the nanoparticles can suspend in the base fluids for a long time and the thermal conductivity of the nanofluid can be far above those of convectional solid liquid suspension. It has long been known that liquid molecules close to a solid surface can form a layer which is solid-like in structure, but little is known about the connection between this layer and the thermal properties of the suspension. In this study, a semi-analytical model for calculating the enhanced thermal conductivity of nanofluids is derived from the steady heat conduction equation in spherical coordinates. The effects of nanolayer thickness, nanoparticle size, volume fraction, thermal conductivity of nanoparticles and base fluid are discussed. A linear thermal conductivity profile inside the nanolayer is considered in the present model. The proposed model, while investigating the impact of the interfacial nanolayer on the effective thermal conductivity of nanofluids, provides an equation to determine its nanolayer thickness for different types of nanofluids. Hence, different relationships between the nanolayer thickness and the nanoparticle size are found for each type of nanofluid. Moreover, based on the present model's prediction, it is found that the effective thermal conductivities of nanofluids show the same result as the Maxwell model when the nanolayer thickness value approaches to zero. Lastly, the effective thermal conductivities of different types of nanofluids calculated by the present model is in good agreement with the experimental results and the prediction is much better than the Maxwell model and Bruggeman model. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:202 / 214
页数:13
相关论文
共 49 条
[1]  
[Anonymous], 1996 FALL M MAT RES
[2]  
[Anonymous], NANO LETT
[3]  
[Anonymous], APPL PHYS
[5]   A benchmark study on the thermal conductivity of nanofluids [J].
Buongiorno, Jacopo ;
Venerus, David C. ;
Prabhat, Naveen ;
McKrell, Thomas ;
Townsend, Jessica ;
Christianson, Rebecca ;
Tolmachev, Yuriy V. ;
Keblinski, Pawel ;
Hu, Lin-wen ;
Alvarado, Jorge L. ;
Bang, In Cheol ;
Bishnoi, Sandra W. ;
Bonetti, Marco ;
Botz, Frank ;
Cecere, Anselmo ;
Chang, Yun ;
Chen, Gany ;
Chen, Haisheng ;
Chung, Sung Jae ;
Chyu, Minking K. ;
Das, Sarit K. ;
Di Paola, Roberto ;
Ding, Yulong ;
Dubois, Frank ;
Dzido, Grzegorz ;
Eapen, Jacob ;
Escher, Werner ;
Funfschilling, Denis ;
Galand, Quentin ;
Gao, Jinwei ;
Gharagozloo, Patricia E. ;
Goodson, Kenneth E. ;
Gutierrez, Jorge Gustavo ;
Hong, Haiping ;
Horton, Mark ;
Hwang, Kyo Sik ;
Iorio, Carlo S. ;
Jang, Seok Pil ;
Jarzebski, Andrzej B. ;
Jiang, Yiran ;
Jin, Liwen ;
Kabelac, Stephan ;
Kamath, Aravind ;
Kedzierski, Mark A. ;
Kieng, Lim Geok ;
Kim, Chongyoup ;
Kim, Ji-Hyun ;
Kim, Seokwon ;
Lee, Seung Hyun ;
Leong, Kai Choong .
JOURNAL OF APPLIED PHYSICS, 2009, 106 (09)
[6]   Thermal conductivity and heat transfer of ceramic nanofluids [J].
Buschmann, Matthias H. .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2012, 62 :19-28
[7]   Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid [J].
Chandrasekar, M. ;
Suresh, S. ;
Bose, A. Chandra .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2010, 34 (02) :210-216
[8]  
Choi S., 1995, ASME FED, V231, P99, DOI DOI 10.1115/1.1532008
[9]  
Daalhuis, 2010, NIST HDB MATH FUNCTI
[10]   Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids [J].
Duangthongsuk, Weerapun ;
Wongwises, Somchai .
EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2009, 33 (04) :706-714