Biclustering on expression data: A review

被引:170
作者
Pontes, Beatriz [1 ]
Giraldez, Raul [2 ]
Aguilar-Ruiz, Jesus S. [2 ]
机构
[1] Univ Seville, Dept Languages & Comp Syst, Seville, Spain
[2] Pablo de Olavide Univ, Sch Engn, Seville, Spain
关键词
Microarray analysis; Gene expression data; Biclustering techniques; MICROARRAY DATA; GENE-ONTOLOGY; SEARCH; ALGORITHMS; PATTERNS;
D O I
10.1016/j.jbi.2015.06.028
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Biclustering has become a popular technique for the study of gene expression data, especially for discovering functionally related gene sets under different subsets of experimental conditions. Most of biclustering approaches use a measure or cost function that determines the quality of biclusters. In such cases, the development of both a suitable heuristics and a good measure for guiding the search are essential for discovering interesting biclusters in an expression matrix. Nevertheless, not all existing biclustering approaches base their search on evaluation measures for biclusters. There exists a diverse set of biclustering tools that follow different strategies and algorithmic concepts which guide the search towards meaningful results. In this paper we present a extensive survey of biclustering approaches, classifying them into two categories according to whether or not use evaluation metrics within the search method: biclustering algorithms based on evaluation measures and non metric-based biclustering algorithms. In both cases, they have been classified according to the type of meta-heuristics which they are based on. (C) 2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
引用
收藏
页码:163 / 180
页数:18
相关论文
共 77 条
[1]   Shifting and scaling patterns from gene expression data [J].
Aguilar-Ruiz, JS .
BIOINFORMATICS, 2005, 21 (20) :3840-3845
[2]   Shifting-and-Scaling Correlation Based Biclustering Algorithm [J].
Ahmed, Hasin Afzal ;
Mahanta, Priyakshi ;
Bhattacharyya, Dhruba Kumar ;
Kalita, Jugal Kumar .
IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2014, 11 (06) :1239-1252
[3]   Improved scoring of functional groups from gene expression data by decorrelating GO graph structure [J].
Alexa, Adrian ;
Rahnenfuehrer, Joerg ;
Lengauer, Thomas .
BIOINFORMATICS, 2006, 22 (13) :1600-1607
[4]  
Gallo CA, 2009, LECT N BIOINFORMAT, V5676, P36, DOI 10.1007/978-3-642-03223-3_4
[5]   Random walk biclustering for microarray data [J].
Angiulli, Fabrizio ;
Cesario, Eugenio ;
Pizzuti, Clara .
INFORMATION SCIENCES, 2008, 178 (06) :1479-1497
[6]  
[Anonymous], 2003, P IEEE COMP SOC C CO
[7]  
[Anonymous], 2009, J. Math. Model. Algor., DOI DOI 10.1007/S10852-009-9102-8
[8]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[9]   Pattern-driven neighborhood search for biclustering of microarray data [J].
Ayadi, Wassim ;
Elloumi, Mourad ;
Hao, Jin-Kao .
BMC BIOINFORMATICS, 2012, 13
[10]   A biclustering algorithm based on a Bicluster Enumeration Tree: application to DNA microarray data [J].
Ayadi, Wassim ;
Elloumi, Mourad ;
Hao, Jin-Kao .
BIODATA MINING, 2009, 2