Biharmonic Maps on Doubly Warped Product Manifolds

被引:0
作者
Madani, Khaldia [1 ]
Ouakkas, Seddik [2 ]
机构
[1] Natl Polytech Sch Oran Maurice Audin ENPO MA, Es Senia, Algeria
[2] Univ Saida, Lab Geometry Anal Control & Applicat, Saida, Algeria
来源
KYUNGPOOK MATHEMATICAL JOURNAL | 2020年 / 60卷 / 03期
关键词
harmonic map; biharmonic map; doubly warped product;
D O I
10.5666/KMJ.2020.60.3.599
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we characterize a class of biharmonic maps from and between doubly product manifolds in terms of theie warping function. Examples are constructed when all of the factors are Euclidean spaces.
引用
收藏
页码:599 / 627
页数:29
相关论文
共 15 条
[1]  
[Anonymous], 2004, ANALELE STIINTIFICE
[2]   On constructing biharmonic maps and metrics [J].
Baird, P ;
Kamissoko, D .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2003, 23 (01) :65-75
[3]   Conformal and semi-conformal biharmonic maps [J].
Baird, Paul ;
Fardoun, Ali ;
Ouakkas, Seddik .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2008, 34 (04) :403-414
[4]   Biharmonic maps between warped product manifolds [J].
Balmus, A. ;
Montaldo, S. ;
Oniciuc, C. .
JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (02) :449-466
[5]  
Djaa NEH, 2012, ACTA MATH UNIV COMEN, V81, P283
[6]   ANOTHER REPORT ON HARMONIC MAPS [J].
EELLS, J ;
LEMAIRE, L .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1988, 20 :385-524
[7]  
Eells J., 1993, ANN MATH STUD
[8]  
Eells J., 1978, Bull. Lond. Math. Soc., V10, P1, DOI DOI 10.1112/BLMS/10.1.1
[9]   2-harmonic maps and their first and second variational formulas [J].
Jiang Guoying .
NOTE DI MATEMATICA, 2008, 28 :209-232
[10]  
Lu W. J., 2013, THESIS