QSPR for predicting the hydrophile-lipophile balance (HLB) of non-ionic surfactants

被引:18
作者
Wu, Jiaqi [1 ]
Yan, Fangyou [1 ]
Jia, Qingzhu [2 ]
Wang, Qiang [1 ]
机构
[1] Tianjin Univ Sci & Technol, Sch Chem Engn & Mat Sci, TEDA, 13St 29, Tianjin 300457, Peoples R China
[2] Tianjin Univ Sci & Technol, Sch Marine & Environm Sci, TEDA, 13St 29, Tianjin 300457, Peoples R China
基金
中国国家自然科学基金;
关键词
QSPR; Hydrophile-lipophile balance (HLB); Non-ionic surfactants; Norm descriptors; QSAR MODELS; APPLICABILITY DOMAIN; VALIDATION; METRICS; VALUES;
D O I
10.1016/j.colsurfa.2020.125812
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The hydrophile-lipophile balance (HLB) value provides an important reference for evaluating the performance behaviors of surfactants. In this work, a quantitative structure-property relationship (QSPR) model was established to predict HLB values of non-ionic surfactants based on the norm descriptor concept. The results showed that the calculated HLB values of 237 non-ionic surfactants agreed well with the experimental values with the squared correlation coefficient (R-2) for the whole dataset of 0.9901 and the average absolute relative deviation (AARD) of 2.93 %. The R-2 and AARD of the training set and the testing set are 0.9901 (R-training(2)) and 0.9900 (R-testing(2)), 2.92 % and 3.47 %, respectively. The cross-validation results, Y-randomized test, mean absolute error (MAE) test and application domain (AD) analysis suggested that this QSPR model performs well in accuracy, robustness and reliability. These results demonstrated that this model is accurate and stable, and further validated that the norm descriptor concept is suitable for describing the HLB values of non-ionic surfactants.
引用
收藏
页数:6
相关论文
共 41 条
[1]  
Ash Irene., 1980, Encyclopedia of Surfactants
[2]  
BETERINGHE A., 2010, QSPR STUDY, V56, P347
[3]   QSPR for HLB Values of Nonionic Surfactants Using Two Simple Descriptors [J].
Chen, Mei-Ling ;
Wang, Zheng-Wu ;
Duan, Han-Jun .
JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2009, 30 (10) :1481-1485
[4]   Real External Predictivity of QSAR Models: How To Evaluate It? Comparison of Different Validation Criteria and Proposal of Using the Concordance Correlation Coefficient [J].
Chirico, Nicola ;
Gramatica, Paola .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2011, 51 (09) :2320-2335
[5]   Surfactants in sludge-amended agricultural soils: a review [J].
Cirelli, Alicia Fernandez ;
Ojeda, Carlos ;
Castro, Mariano J. L. ;
Salgot, Miquel .
ENVIRONMENTAL CHEMISTRY LETTERS, 2008, 6 (03) :135-148
[6]   Prediction of Surfactants' Properties using Multiscale Molecular Modeling Tools: A Review [J].
Creton, B. ;
Nieto-Draghi, C. ;
Pannacci, N. .
OIL AND GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES, 2012, 67 (06) :969-982
[7]  
Davies J.T., 1961, J FRANKLIN I, V273, P339
[8]  
Davies J.T., 1957, P INT C SURFACE ACTI, P426
[9]  
Dearden J.C., 2016, Oncology, V1, P1, DOI [10.4018/IJQSPR.2016010101, DOI 10.4018/IJQSPR.2016010101, DOI 10.4018/978-1-5225-0549-5.CH003]
[10]   QSPR for HLB of nonionic surfactants based on polyoxyethylene group [J].
Gad, Elshafie Ahmed Mahmoud ;
Khairou, Khalid Sulaiman .
JOURNAL OF DISPERSION SCIENCE AND TECHNOLOGY, 2008, 29 (07) :940-947