On the 3-colorability of planar graphs without 4-, 7-and 9-cycles

被引:7
作者
Lu, Huajing [1 ]
Wang, Yingqian [1 ]
Wang, Weifan [1 ]
Bu, Yuehua [1 ]
Montassier, Mickael [2 ]
Raspaud, Andre [2 ]
机构
[1] Zhejiang Normal Univ, Coll Math Phys & Informat Engn, Jinhua 321004, Peoples R China
[2] Univ Bordeaux, LaBRI, F-33405 Talence, France
关键词
Planar graphs; Cycles; Extendability; Coloring; CYCLES;
D O I
10.1016/j.disc.2009.02.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we mainly prove that planar graphs without 4-, 7- and 9-cycles are 3-colorable. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:4596 / 4607
页数:12
相关论文
共 17 条
[1]  
ABBOTT HL, 1991, ARS COMBINATORIA, V32, P203
[2]  
Bondy J.A., 2008, GTM
[3]   Planar graphs without 5-and 7-cycles and without adjacent triangles are 3-colorable [J].
Borodin, O. V. ;
Glebov, A. N. ;
Montassier, M. ;
Raspaud, A. .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2009, 99 (04) :668-673
[4]  
Borodin OV, 1996, J GRAPH THEOR, V21, P183
[5]   Planar graphs without cycles of length from 4 to 7 are 3-colorable [J].
Borodin, OV ;
Glebov, AN ;
Raspaud, A ;
Salavatipour, MR .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 93 (02) :303-311
[6]   Three-coloring planar graphs without short cycles [J].
Chen, Min ;
Raspaud, Andre ;
Wang, Weifan .
INFORMATION PROCESSING LETTERS, 2007, 101 (03) :134-138
[7]  
Jensen T., 1995, Graph Coloring Problems, P115
[8]   On 3-colorable planar graphs without cycles of four lengths [J].
Luo, Xiaofang ;
Chen, Min ;
Wang, Weifan .
INFORMATION PROCESSING LETTERS, 2007, 103 (04) :150-156
[9]  
SANDERS DP, 1995, GRAPHS COMBIN, V11, P92
[10]   A sufficient condition for a planar graph to be 3-choosable [J].
Shen, Liang ;
Wang, Yingqian .
INFORMATION PROCESSING LETTERS, 2007, 104 (04) :146-151