Finite groups in which Sylow normalizers have nilpotent Hall supplements

被引:7
作者
Li, B. [1 ]
Guo, W. [2 ]
Huang, J. [3 ]
机构
[1] Chengdu Univ Informat Technol, Chengdu, Peoples R China
[2] Xuzhou Normal Univ, Xuzhou, Peoples R China
[3] Univ Sci & Technol PR China, Hefei, Peoples R China
关键词
finite group; Sylow subgroup; normalizer; nilpotent Hall supplement; soluble group; SUBGROUPS;
D O I
10.1007/s11202-009-0075-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The normalizer of each Sylow subgroup of a finite group G has a nilpotent Hall supplement in G if and only if G is soluble and every tri-primary Hall subgroup H (if exists) of G satisfies either of the following two statements: (i) H has a nilpotent bi-primary Hall subgroup; (ii) Let pi(H) = {p, q, r}. Then there exist Sylow p-, q-, r-subgroups H (p) , H (q) , and H (r) of H such that H (q) aS dagger N (H) (H (p) ), H (r) aS dagger N (H) (H (q) ), and H (p) aS dagger N (H) (H (r) ).
引用
收藏
页码:667 / 673
页数:7
相关论文
共 12 条
[1]  
[Anonymous], [No title captured]
[2]   Number of Sylow subgroups and p-nilpotence of finite groups [J].
Chigira, N .
JOURNAL OF ALGEBRA, 1998, 201 (01) :71-85
[3]  
DANIELLO A, 2004, B AUSTR MATH SOC, V69, P522
[4]  
Doerk K., 1992, De Gruyter Exp. Math., V4, pxiv + 891
[5]  
GUO W, 1993, DOKL AKAD NAUK BSSR, V37, P22
[6]  
GUO W, 2005, J APPL ALGEBRA DISCR, V3, P1
[7]  
Guo WB, 1996, SIBERIAN MATH J+, V37, P253
[8]  
Guo WB, 2000, THEORY CLASSES GROUP
[9]  
Huppert B., 1982, FINITE GROUPS, VIII
[10]  
KONDRATEV AS, 1988, SUBGROUP STRUCTURE G, P82