Number of prime divisors in a product of consecutive integers

被引:13
作者
Laishram, S [1 ]
Shorey, TN [1 ]
机构
[1] Tata Inst Fundamental Res, Sch Math, Bombay 400005, Maharashtra, India
关键词
D O I
10.4064/aa113-4-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:327 / 341
页数:15
相关论文
共 13 条
[1]  
[Anonymous], 1934, J LONDON MATH SOC
[2]   The kth prime is greater than k(lnk+lnlnk-1) for k≥2 [J].
Dusart, P .
MATHEMATICS OF COMPUTATION, 1999, 68 (225) :411-415
[3]  
Dusart P., 1999, SOC RAOYALE CANADA, V21, P53
[4]  
Mukhopadhyay A, 2004, PUBL MATH-DEBRECEN, V64, P79
[5]  
Robbins H., 1955, The American Mathematical Monthly, V62, P26, DOI 10.2307/2308012
[6]  
Rosser J.B., 1962, ILLINOIS J MATH, V6, P64
[7]   Almost squares and factorisations in consecutive integers [J].
Saradha, N ;
Shorey, TN .
COMPOSITIO MATHEMATICA, 2003, 138 (01) :113-124
[8]   Almost squares in arithmetic progression [J].
Saradha, N ;
Shorey, TN .
COMPOSITIO MATHEMATICA, 2003, 138 (01) :73-111
[9]  
Sylvester J.J, 1912, MESSENGER MATH, V4, P687
[10]  
SYLVESTER JJ, 1892, MESSENGER MATH, V21, P87