Generating Pedestrian Images for Person Re-identification

被引:0
作者
Zhang, Zhong [1 ,2 ]
Si, Tongzhen [1 ,2 ]
Liu, Shuang [1 ,2 ]
机构
[1] Tianjin Normal Univ, Tianjin Key Lab Wireless Mobile Commun & Power Tr, Tianjin, Peoples R China
[2] Tianjin Normal Univ, Coll Elect & Commun Engn, Tianjin, Peoples R China
来源
COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, CSPS 2018, VOL II: SIGNAL PROCESSING | 2020年 / 516卷
基金
中国国家自然科学基金;
关键词
Person re-identification; GAN; Generated samples;
D O I
10.1007/978-981-13-6504-1_5
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Person re-identification (re-ID) is mainly used to search the target pedestrian in different cameras. In this paper, we employ generative adversarial network (GAN) to expand training samples and evaluate the performance of two different label assignment strategies for the generated samples. We also investigate how the number of generated samples influences the re-ID performance. We do several experiments on the Market1501 database, and the experimental results are of essential reference value to this research field.
引用
收藏
页码:37 / 43
页数:7
相关论文
共 19 条
  • [1] [Anonymous], Unsupervised representation learning with deep convolutional generative adversarial networks
  • [2] Symmetry-driven accumulation of local features for human characterization and re-identification
    Bazzani, Loris
    Cristani, Marco
    Murino, Vittorio
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2013, 117 (02) : 130 - 144
  • [3] Image-Image Domain Adaptation with Preserved Self-Similarity and Domain-Dissimilarity for Person Re-identification
    Deng, Weijian
    Zheng, Liang
    Ye, Qixiang
    Kang, Guoliang
    Yang, Yi
    Jiao, Jianbin
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 994 - 1003
  • [4] Object Detection with Discriminatively Trained Part-Based Models
    Felzenszwalb, Pedro F.
    Girshick, Ross B.
    McAllester, David
    Ramanan, Deva
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (09) : 1627 - 1645
  • [5] Goodfellow I.J., 2014, ADV NEUR IN, p1406.2661, DOI DOI 10.1145/3422622
  • [6] Deep Residual Learning for Image Recognition
    He, Kaiming
    Zhang, Xiangyu
    Ren, Shaoqing
    Sun, Jian
    [J]. 2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 770 - 778
  • [7] Köstinger M, 2012, PROC CVPR IEEE, P2288, DOI 10.1109/CVPR.2012.6247939
  • [8] Liao SC, 2015, PROC CVPR IEEE, P2197, DOI 10.1109/CVPR.2015.7298832
  • [9] Ma BP, 2012, LECT NOTES COMPUT SC, V7583, P413, DOI 10.1007/978-3-642-33863-2_41
  • [10] ImageNet Large Scale Visual Recognition Challenge
    Russakovsky, Olga
    Deng, Jia
    Su, Hao
    Krause, Jonathan
    Satheesh, Sanjeev
    Ma, Sean
    Huang, Zhiheng
    Karpathy, Andrej
    Khosla, Aditya
    Bernstein, Michael
    Berg, Alexander C.
    Fei-Fei, Li
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2015, 115 (03) : 211 - 252