Maximum-Likelihood Direction Finding Under Elliptical Noise Using the EM Algorithm

被引:7
|
作者
Baktash, Ebrahim [1 ]
Karimi, Mahmood [1 ]
Wang, Xiaodong [2 ]
机构
[1] Shiraz Univ, Sch Elect & Comp Engn, Shiraz 7134851154, Iran
[2] Columbia Univ, Elect Engn Dept, New York, NY 10027 USA
关键词
CES noise; EM method; DOA estimation;
D O I
10.1109/LCOMM.2019.2911518
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Unlike subspace-based solutions of direction-of-arrival (DOA) estimation under non-Gaussian noise, where the only optional difference with the Gaussian case is the scatter/covariance matrix estimation method, maximumlikelihood (ML)-based DOA solutions need a different treatment under the non-Gaussianity assumption. In this letter, we derive a particular ML-based DOA solution, called the expectation-maximization (EM) estimator, under the wide class of complex elliptically symmetric (CES) distributions.
引用
收藏
页码:1041 / 1044
页数:4
相关论文
共 50 条