An adjoint sensitivity analysis of the Telegrapher's neutron kinetic equations

被引:1
|
作者
Zarei, M. [1 ]
机构
[1] Shahid Beheshti Univ, Engn Dept, POB 1983969411, Tehran, Iran
关键词
P1; approximation; Telegrapher's equation; Adjoint sensitivity analysis; Delayed neutron; Uncertainty; UNCERTAINTY;
D O I
10.1016/j.anucene.2021.108839
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The work presented herein is an approach to the kinetic uncertainty analysis of the Telegrapher's neutron kinetic equations. The adjoint sensitivity analysis framework has been resorted to meet this end. Burnup induced uncertainty in the value of the delayed neutron fraction is addressed and its impact on the neutron population (as an observable quantity by the way of flux detectors) is investigated. Results compared against those obtained through an exact forward analysis approach confirm quite satisfactory accuracy of the proposed variational method. The effect of relaxation time on the adjoint system dynamics is moreover explored.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Automating adjoint sensitivity analysis for multidisciplinary models involving partial differential equations
    Xiang, Ru
    van Schie, Sebastiaan P. C.
    Scotzniovsky, Luca
    Yan, Jiayao
    Kamensky, David
    Hwang, John T.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2024, 67 (08)
  • [22] Adjoint Equations in Stability Analysis
    Luchini, Paolo
    Bottaro, Alessandro
    ANNUAL REVIEW OF FLUID MECHANICS, VOL 46, 2014, 46 : 493 - +
  • [23] Statistical analysis of the inhomogeneous telegrapher's process
    Iacus, SM
    STATISTICS & PROBABILITY LETTERS, 2001, 55 (01) : 83 - 88
  • [24] Sensitivity and uncertainty analysis of the fractional neutron point kinetics equations
    Espinosa-Paredes, G.
    Polo-Labarrios, M. -A.
    Diaz-Gonzalez, L.
    Vazquez-Rodriguez, A.
    Espinosa-Martinez, E. -G.
    ANNALS OF NUCLEAR ENERGY, 2012, 42 : 169 - 174
  • [25] COMMENTS ON DIRECT AND ADJOINT SENSITIVITY EQUATIONS FOR PARAMETER OPTIMIZATION
    KELLEY, HJ
    KOKOTOVI.P
    HELLER, J
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1968, AC13 (03) : 312 - &
  • [26] COMMENTS ON DIRECT AND ADJOINT SENSITIVITY EQUATIONS FOR PARAMETER OPTIMIZATION
    GAVRILOV.M
    PETROVIC, R
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1968, AC13 (05) : 597 - &
  • [27] Canonical quantisation of telegrapher's equations coupled by ideal nonreciprocal elements
    Parra-Rodriguez, A.
    Egusquiza, I. L.
    QUANTUM, 2022, 6
  • [28] Generalized Cattaneo (telegrapher's) equations in modeling anomalous diffusion phenomena
    Gorska, K.
    Horzela, A.
    Lenzi, E. K.
    Pagnini, G.
    Sandev, T.
    PHYSICAL REVIEW E, 2020, 102 (02)
  • [29] Second order adjoint sensitivity analysis of multibody systems described by differential–algebraic equations
    Jie-Yu Ding
    Zhen-Kuan Pan
    Li-Qun Chen
    Multibody System Dynamics, 2007, 18 : 599 - 617
  • [30] SOLVING FORWARD AND CONTROL PROBLEMS FOR TELEGRAPHER'S EQUATIONS ON METRIC GRAPHS
    Alam, G. M.
    Avdonin, S. A.
    Avdonina, N. B.
    MATHEMATICAL REPORTS, 2022, 24 (1-2): : 3 - 21