Resolving combined wave-current fields from measurements using interior point optimization

被引:8
作者
Draycott, S. [1 ]
Pillai, A. C. [2 ]
Ingram, D. M. [1 ]
Johanning, L. [2 ]
机构
[1] Univ Edinburgh, Sch Engn, Inst Energy Syst, Edinburgh EH9 3DW, Midlothian, Scotland
[2] Univ Exeter, Coll Engn Math & Phys Sci, Penryn Campus, Penryn TR10 9FE, England
基金
英国工程与自然科学研究理事会;
关键词
Wave-current interactions; Wave reflection analysis; Tank testing; Interior-point optimization; Non-linear programming; REFLECTION;
D O I
10.1016/j.coastaleng.2019.03.008
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Complex wave and wave-current conditions exist in the natural world, and are increasingly emulated in advanced experimental facilities to de-risk the deployment, operation and maintenance of offshore structures and renewable energy devices. This can include combinations of ocean swell, multi-directional wind-driven seas, and reflected wave conditions interacting with a current field. It is vital to understand the full nature of these potentially hazardous conditions so they can be properly simulated in numerical models, to contextualize measurements made in field, and experimental programmes. Here, a numerical framework is presented for isolating both the wave systems and the mean current velocities from measured data using an interior point optimizer. A developed frequency domain solver is used to resolve, from experimentally obtained wave gauge measurements, two opposing wave systems on a collinear current, and used to effectively isolate the wave systems and predict the current velocity using only wave gauge measurements. Thirty five test cases are considered; consisting of five wave spectra interacting with seven different current velocities ranging from -0.3ms(-1)10.3m s(-1). Comparisons between the theoretical and derived wave numbers and current velocities show good agreement and the performance of the method is similar to that of existing methodologies while requiring no a priori knowledge of the current velocity impacting the wave field required. Although results are presented for the collinear problem, the presented method can be applied to a wide range of wave and current combinations, and provides a useful tool for increasing understanding of both ocean and experimental conditions.
引用
收藏
页码:4 / 14
页数:11
相关论文
共 33 条
  • [1] [Anonymous], 2015, P 11 EUR WAV TID ENG
  • [2] [Anonymous], 1993, P COAST ENG C, DOI DOI 10.9753/ICCE.V23.%P
  • [3] [Anonymous], THESIS
  • [4] Burke E.K., 2013, Search Methodologies: Introductory Tutorials in Optimization and Decision Support Techniques, V2nd
  • [5] Wave reflection from vertical breakwater with porous structure
    Chen, Hong-Bin
    Tsai, Ching-Piao
    Chiu, Juinn-Ray
    [J]. OCEAN ENGINEERING, 2006, 33 (13) : 1705 - 1717
  • [6] Multi-scale ocean response to a large tidal stream turbine array
    De Dominicis, Michela
    Murray, Rory O'Hara
    Wolf, Judith
    [J]. RENEWABLE ENERGY, 2017, 114 : 1160 - 1179
  • [7] WAVE REFLECTION FROM BREAKWATER
    DICKSON, WS
    HERBERS, THC
    THORNTON, EB
    [J]. JOURNAL OF WATERWAY PORT COASTAL AND OCEAN ENGINEERING-ASCE, 1995, 121 (05): : 262 - 268
  • [8] The SPAIR method: Isolating incident and reflected directional wave spectra in multidirectional wave basins
    Draycott, S.
    Davey, T.
    Ingram, D. M.
    Day, A.
    Johanning, L.
    [J]. COASTAL ENGINEERING, 2016, 114 : 265 - 283
  • [9] Draycott S, 2018, COAST ENG J, P1
  • [10] Frigaard P., 1997, P IAHR SEM MULT WAV, P131