Optimal Continuous Dependence Estimates for Fractional Degenerate Parabolic Equations

被引:17
作者
Alibaud, Nathael [1 ,2 ]
Cifani, Simone [3 ]
Jakobsen, Espen R. [3 ]
机构
[1] Univ Franche Comte, CNRS, UMR 6623, F-25030 Besancon, France
[2] Prince Songkla Univ, Fac Sci, Dept Math & Stat, Hat Yai 90112, Songkhla, Thailand
[3] Norwegian Univ Sci & Technol, Dept Math, N-7491 Trondheim, Norway
关键词
INITIAL-VALUE-PROBLEM; ENTROPY SOLUTIONS; REGULARIZATION; HYDRODYNAMICS; UNIQUENESS;
D O I
10.1007/s00205-014-0737-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive continuous dependence estimates for weak entropy solutions of degenerate parabolic equations with nonlinear fractional diffusion. The diffusion term involves the fractional Laplace operator, for . Our results are quantitative and we exhibit an example for which they are optimal. We cover the dependence on the nonlinearities, and for the first time, the Lipschitz dependence on alpha in the BV-framework. The former estimate (dependence on nonlinearity) is robust in the sense that it is stable in the limits and . In the limit , converges to the usual Laplacian, and we show rigorously that we recover the optimal continuous dependence result of Cockburn and Gripenberg (J Differ Equ 151(2):231-251, 1999) for local degenerate parabolic equations (thus providing an alternative proof).
引用
收藏
页码:705 / 762
页数:58
相关论文
共 56 条
[21]   Regularity of solutions for the critical N-dimensional Burgers' equation [J].
Chan, Chi Hin ;
Czubak, Magdalena .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (02) :471-501
[22]   EVENTUAL REGULARIZATION OF THE SLIGHTLY SUPERCRITICAL FRACTIONAL BURGERS EQUATION [J].
Chan, Chi Hin ;
Czubak, Magdalena ;
Silvestre, Luis .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2010, 27 (02) :847-861
[23]   L1-framework for continuous dependence and error estimates for quasilinear anisotropic degenerate parabolic equations [J].
Chen, GQ ;
Karlsen, KH .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 358 (03) :937-963
[24]   Quasilinear anisotropic degenerate parabolic equations with time-space dependent diffusion coefficients [J].
Chen, GQ ;
Karlsen, KH .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2005, 4 (02) :241-266
[25]   On numerical methods and error estimates for degenerate fractional convection-diffusion equations [J].
Cifani, Simone ;
Jakobsen, Espen R. .
NUMERISCHE MATHEMATIK, 2014, 127 (03) :447-483
[26]   Entropy solution theory for fractional degenerate convection-diffusion equations [J].
Cifani, Simone ;
Jakobsen, Espen R. .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (03) :413-441
[27]  
Clavin P, 2002, NATO ADV SCI I C-MAT, V569, P49
[28]   Continuous dependence on the nonlinearities of solutions of degenerate parabolic equations [J].
Cockburn, B ;
Gripenberg, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 151 (02) :231-251
[29]   On convergence to entropy solutions of a single conservation law [J].
Cockburn, B ;
Gripenberg, G ;
Londen, SO .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 128 (01) :206-251
[30]  
Cont R., 2004, Financial Modelling with Jump Processes