Transformation techniques for Toeplitz and Toeplitz-plus-Hankel matrices .1. Transformations

被引:30
作者
Heinig, G [1 ]
Bojanczyk, A [1 ]
机构
[1] CORNELL UNIV,SCH ELECT ENGN,ITHACA,NY 14853
关键词
D O I
10.1016/S0024-3795(96)00527-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Transformations of the form A --> C(1)(T)AG(2) are investigated that transform Toeplitz and Toeplitz-plus-Hankel matrices into generalized Cauchy matrices. C-1 and C-2, are matrices related to the discrete Fourier transformation or to various real trigonometric transformations. Combining these results with pivoting techniques, in paper II algorithms for Toeplitz and Toeplitz-plus-Hankel systems will be presented that are more stable than classical algorithms. (C) Elsevier Science Inc., 1997.
引用
收藏
页码:193 / 226
页数:34
相关论文
共 28 条
[1]  
Bini D., 1994, POLYNOMIAL MATRIX CO, V1
[2]  
BOMAN E, 1995, SIAM J MATRIX ANAL A, P16
[3]   ON THE USE OF CERTAIN MATRIX ALGEBRAS ASSOCIATED WITH DISCRETE TRIGONOMETRIC TRANSFORMS IN MATRIX DISPLACEMENT DECOMPOSITION [J].
BOZZO, E ;
DIFIORE, C .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1995, 16 (01) :312-326
[4]   A WEAKLY STABLE ALGORITHM FOR PADE APPROXIMANTS AND THE INVERSION OF HANKEL-MATRICES [J].
CABAY, S ;
MELESHKO, R .
SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1993, 14 (03) :735-765
[5]  
CHAN T, 1992, SIAM J MATRIX ANAL A, V13, P1079
[6]  
Donoghue W. F., 1974, Die Grundlehren der mathematischen Wissenschaften, V207
[7]   HANKEL AND LOEWNER MATRICES [J].
FIEDLER, M .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1984, 58 (APR) :75-95
[8]  
GOHBERG I, 1995, MATH COMPUT, V64, P1557, DOI 10.1090/S0025-5718-1995-1312096-X
[9]   CIRCULANTS, DISPLACEMENTS AND DECOMPOSITIONS OF MATRICES [J].
GOHBERG, I ;
OLSHEVSKY, V .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1992, 15 (05) :730-743
[10]   LINEAR COMPLEXITY PARALLEL ALGORITHMS FOR LINEAR-SYSTEMS OF EQUATIONS WITH RECURSIVE STRUCTURE [J].
GOHBERG, I ;
KAILATH, T ;
KOLTRACHT, I ;
LANCASTER, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1987, 88-9 :271-315