Asymptotics for the low-lying eigenstates of the Schrodinger operator with magnetic field near corners

被引:39
作者
Bonnaillie-Noel, Virginie
Dauge, Monique
机构
[1] Univ Rennes 1, CNRS, UMR 6625, IRMAR, F-35042 Rennes, France
[2] ENS Cachan, F-35170 Bruz, France
来源
ANNALES HENRI POINCARE | 2006年 / 7卷 / 05期
关键词
D O I
10.1007/s00023-006-0271-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Neumann realization for the Schrodinger operator with magnetic field is considered in a bounded two-dimensional domain with corners. This operator is associated with a small semi-classical parameter h or, equivalently, with a large magnetic field. We investigate the behavior of its eigenpairs as h tends to zero, like in a semi-classical limit. We prove, in the situation where the domain is a polygon and the magnetic field is constant, that the lowest eigenvalues are exponentially close to those of model problems associated with the corners. We approximate the corresponding eigenvectors by linear combinations of functions concentrated in corners at the scale root h. If the domain has curved sides and the magnetic field is smoothly varying, we exhibit a full asymptotics for eigenpairs in powers of root h.
引用
收藏
页码:899 / 931
页数:33
相关论文
共 29 条
[1]   Numerical analysis of superconductivity [J].
Alouges, F ;
Bonnaillie, V .
COMPTES RENDUS MATHEMATIQUE, 2003, 337 (08) :543-548
[2]  
ALOUGES F, 2006, IN PRESS NUMERICAL M
[3]   Onset of superconductivity in decreasing fields for general domains [J].
Bernoff, A ;
Sternberg, P .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (03) :1272-1284
[4]  
Bonnaillie V, 2005, ASYMPTOTIC ANAL, V41, P215
[5]  
BONNAILLIENOEL M, 2005, 0537 IRMAR
[6]  
BONNAILLIENOEL V, 2005, SCHRODINGER OPERATOR
[7]   Superconductivity in a wedge: analytical variational results [J].
Brosens, F ;
Devreese, JT ;
Fomin, VM ;
Moschalkov, VV .
SOLID STATE COMMUNICATIONS, 1999, 111 (10) :565-569
[8]  
Cycon H.L., 1987, TEXTS MONOGRAPHS PHY
[9]   Eigenmode asymptotics in thin elastic plates [J].
Dauge, M ;
Djurdjevic, I ;
Faou, E ;
Rössle, A .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1999, 78 (09) :925-964
[10]  
de Gennes P. G., 1989, SUPERCONDUCTIVITY ME