Derivations on Toeplitz Algebras

被引:2
|
作者
Didas, Michael [1 ]
Eschmeier, Joerg [1 ]
机构
[1] Univ Saarland, Fachrichtung Math, D-66041 Saarbracken, Germany
来源
CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES | 2014年 / 57卷 / 02期
关键词
derivations; Toeplitz algebras; strictly pseudoconvex domains; ESSENTIAL COMMUTANT; OPERATORS;
D O I
10.4153/CMB-2013-001-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let H-2(Omega) be the Hardy space on a strictly pseudoconvex domain Omega subset of C-n, and let A subset of L-infinity(partial derivative Omega) denote the subalgebra of all L-infinity-functions f with compact Hankel operator H-f. Given any closed subalgebra B subset of A containing C(partial derivative Omega), we describe the first Hochschild cohomology group of the corresponding Toeplitz algebra J(B) subset of B(H-2(Omega)). In particular, we show that every derivation on J(A) is inner. These results are new even for n = 1, where it follows that every derivation on J(H-infinity + C) is inner, while there are non-inner derivations on J(H-infinity + C(partial derivative B-n)) over the unit ball B-n in dimension n > 1.
引用
收藏
页码:270 / 276
页数:7
相关论文
共 50 条