HYPERBOLIC ALEXANDROV-FENCHEL QUERMASSINTEGRAL INEQUALITIES II

被引:51
作者
Ge, Yuxin [1 ]
Wang, Guofang [2 ]
Wu, Jie [2 ,3 ]
机构
[1] Univ Paris Est Creteil Val De Marne, CNRS UMR 8050, Dept Math, Lab Anal & Math Appl, F-94010 Creteil, France
[2] Univ Freiburg, Math Inst, D-79104 Freiburg, Germany
[3] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Peoples R China
关键词
GEOMETRIC INEQUALITIES; CONFORMAL GEOMETRY; INTEGRAL GEOMETRY; CURVATURE; SPACE; TRUDINGER; SPHERE; MOSER;
D O I
10.4310/jdg/1406552250
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we first establish an optimal Sobolev-type inequality for hypersurfaces in H-n (see Theorem 1.1). As an application we obtain hyperbolic Alexandrov-Fenchel inequalities for curvature integrals and quermassintegrals. More precisely, we prove a geometric inequality in the hyperbolic space H-n, which is a hyperbolic Alexandrov-Fenchel inequality, integral(Sigma)sigma(2k) >= C(n-1)(2k)wn-1{(vertical bar Sigma vertical bar/wn-1)(1/k) + (vertical bar Sigma vertical bar/w(n-1))(1/k n-1-2k/n-1)}(k), When Sigma is a horospherical convex and 2k <= n - 1. Equality holds if and only if Sigma is a geodesic sphere in H-n. Here sigma j = sigma(j)(k) is the jth mean curvature and k = (k(1), k(2), ... , k(n-1)) is the set of the principal curvatures of Sigma. Also, an optimal inequality for quermassintegral in H-n is W2k+1 (Omega) >= w(n-1)/n Sigma(k)(i=0) n-1-2k/n-1-2k+2i C-k(i) (nW(1)(Omega)/w(n-1)) (n-1-2k+2i/n-1), provided that Omega subset of H-n is a domain with Sigma = partial derivative Omega horospherical convex, where 2k <= n - 1. Equality holds if and only if Sigma is a geodesic sphere in H-n. Here W-r(Omega) is quermassintegrals in integral geometry.
引用
收藏
页码:237 / 260
页数:24
相关论文
共 31 条
[1]   Pinching estimates and motion of hypersurfaces by curvature functions [J].
Andrews, Ben .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2007, 608 :17-33
[2]  
[Anonymous], MICHIGAN MATH J
[3]  
AUBIN T, 1976, J MATH PURE APPL, V55, P269
[4]   SHARP SOBOLEV INEQUALITIES ON THE SPHERE AND THE MOSER-TRUDINGER INEQUALITY [J].
BECKNER, W .
ANNALS OF MATHEMATICS, 1993, 138 (01) :213-242
[5]  
Brendle S., ARXIV12090669
[6]  
Burago Yu. D., 1988, GEOMETRIC INEQUALITI, V285
[7]   On Aleksandrov-Fenchel Inequalities for k-Convex Domains [J].
Chang, Sun-Yung Alice ;
Wang, Yi .
MILAN JOURNAL OF MATHEMATICS, 2011, 79 (01) :13-38
[8]   The inequality of Moser and Trudinger and applications to conformal geometry [J].
Chang, SYA ;
Yang, PC .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2003, 56 (08) :1135-1150
[9]  
Cheng X., ARXIV12081786
[10]  
de Lima L.L., ARXIV12090438V2