A large and rich EEG dataset for modeling human visual object recognition

被引:36
作者
Gifford, Alessandro T. [1 ,2 ,3 ]
Dwivedi, Kshitij [4 ]
Roig, Gemma [4 ]
Cichy, Radoslaw M. [1 ,2 ,3 ,5 ]
机构
[1] Free Univ Berlin, Dept Educ & Psychol, Berlin, Germany
[2] Charite Univ Med Berlin, Einstein Ctr Neurosci Berlin, Berlin, Germany
[3] Bernstein Ctr Computat Neurosci Berlin, Berlin, Germany
[4] Goethe Univ, Dept Comp Sci, Frankfurt, Germany
[5] Humboldt Univ, Berlin Sch Mind & Brain, Berlin, Germany
基金
欧洲研究理事会;
关键词
Artificial neural networks; Computational neuroscience; Electroencephalography; Open -access data resource; Neural encoding models; Visual object recognition; DEEP NEURAL-NETWORKS; HIERARCHICAL-MODELS; BRAIN; REPRESENTATIONS; NEUROSCIENCE; SYSTEM; IMAGES; CORTEX; SPACE; SPEED;
D O I
10.1016/j.neuroimage.2022.119754
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The human brain achieves visual object recognition through multiple stages of linear and nonlinear transfor-mations operating at a millisecond scale. To predict and explain these rapid transformations, computational neuroscientists employ machine learning modeling techniques. However, state-of-the-art models require massive amounts of data to properly train, and to the present day there is a lack of vast brain datasets which exten-sively sample the temporal dynamics of visual object recognition. Here we collected a large and rich dataset of high temporal resolution EEG responses to images of objects on a natural background. This dataset includes 10 participants, each with 82,160 trials spanning 16,740 image conditions. Through computational modeling we established the quality of this dataset in five ways. First, we trained linearizing encoding models that successfully synthesized the EEG responses to arbitrary images. Second, we correctly identified the recorded EEG data image conditions in a zero-shot fashion, using EEG synthesized responses to hundreds of thousands of candidate image conditions. Third, we show that both the high number of conditions as well as the trial repetitions of the EEG dataset contribute to the trained models' prediction accuracy. Fourth, we built encoding models whose predic-tions well generalize to novel participants. Fifth, we demonstrate full end-to-end training of randomly initialized DNNs that output EEG responses for arbitrary input images. We release this dataset as a tool to foster research in visual neuroscience and computer vision.
引用
收藏
页数:18
相关论文
共 89 条
[1]   A comprehensive review of EEG-based brain-computer interface paradigms [J].
Abiri, Reza ;
Borhani, Soheil ;
Sellers, Eric W. ;
Jiang, Yang ;
Zhao, Xiaopeng .
JOURNAL OF NEURAL ENGINEERING, 2019, 16 (01)
[2]   A massive 7T fMRI dataset to bridge cognitive neuroscience and artificial intelligence [J].
Allen, Emily J. ;
St-Yves, Ghislain ;
Wu, Yihan ;
Breedlove, Jesse L. ;
Prince, Jacob S. ;
Dowdle, Logan T. ;
Nau, Matthias ;
Caron, Brad ;
Pestilli, Franco ;
Charest, Ian ;
Hutchinson, J. Benjamin ;
Naselaris, Thomas ;
Kay, Kendrick .
NATURE NEUROSCIENCE, 2022, 25 (01) :116-+
[3]  
[Anonymous], 2014, P EUR C COMP VIS ZUR
[4]   The temporal evolution of conceptual object representations revealed through models of behavior, semantics and deep neural networks [J].
Bankson, B. B. ;
Hebart, M. N. ;
Groen, I. I. A. ;
Baker, C., I .
NEUROIMAGE, 2018, 178 :172-182
[5]   Understanding the role of individual units in a deep neural network [J].
Bau, David ;
Zhu, Jun-Yan ;
Strobelt, Hendrik ;
Lapedriza, Agata ;
Zhou, Bolei ;
Torralba, Antonio .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (48) :30071-30078
[6]   The psychophysics toolbox [J].
Brainard, DH .
SPATIAL VISION, 1997, 10 (04) :433-436
[7]   Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition [J].
Cadieu, Charles F. ;
Hong, Ha ;
Yamins, Daniel L. K. ;
Pinto, Nicolas ;
Ardila, Diego ;
Solomon, Ethan A. ;
Majaj, Najib J. ;
DiCarlo, James J. .
PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (12)
[8]   Do we know what the early visual system does? [J].
Carandini, M ;
Demb, JB ;
Mante, V ;
Tolhurst, DJ ;
Dan, Y ;
Olshausen, BA ;
Gallant, JL ;
Rust, NC .
JOURNAL OF NEUROSCIENCE, 2005, 25 (46) :10577-10597
[9]   Multitask learning [J].
Caruana, R .
MACHINE LEARNING, 1997, 28 (01) :41-75
[10]   BOLD5000, a public fMRI dataset while viewing 5000 visual images [J].
Chang, Nadine ;
Pyles, John A. ;
Marcus, Austin ;
Gupta, Abhinav ;
Tarr, Michael J. ;
Aminoff, Elissa M. .
SCIENTIFIC DATA, 2019, 6 (1)