Tunable plasmon-induced transparency with graphene-based T-shaped array metasurfaces

被引:43
作者
Niu, Yuying [1 ]
Wang, Jicheng [1 ,2 ,3 ]
Hu, Zhengda [1 ]
Zhang, Feng [2 ]
机构
[1] Jiangnan Univ, Sch Sci, Jiangsu Prov Res Ctr Light Ind Optoelect Engn & T, Wuxi 214122, Peoples R China
[2] Chinese Acad Sci, Inst Semicond, Key Lab Semicond Mat Sci, Beijing 100083, Peoples R China
[3] Southeast Univ, State Key Lab Millimeter Waves, Nanjing 210096, Jiangsu, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Metasurfaces; Graphene-based; Plasmon-induced transparency; Carrier mobility; ELECTROMAGNETICALLY INDUCED TRANSPARENCY; METAMATERIALS; FILTERS; ANALOG; CLOAK;
D O I
10.1016/j.optcom.2018.02.009
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The frequency tunable Plasmonic induced transparency (PIT) effect is researched with a periodically patterned T-shaped graphene array in mid-infrared region. We adjust the geometrical parameters to obtain the optimized combination for the realization of the PIT response and use the coupled Lorentz oscillator model to analysis the physical mechanism. Due to the properties of graphene, the PIT effect can be easily and markedly enhanced with the increase of chemical potential and carrier mobility. The frequency of PIT effect is also insensitive with the angle of incident light. In addition, we also propose the.. shaped structure to realizing the double-peak PIT effect. The results offer a flexible approach for the development of tunable graphene-based photonic devices.
引用
收藏
页码:77 / 83
页数:7
相关论文
共 50 条
  • [21] Tunable plasmon-induced transparency based on graphene nanoring coupling with graphene nanostrips
    Liao, Chang-Long
    Fu, Guang-Lai
    Xia, Sheng-Xuan
    Li, Hong-Ju
    Zhai, Xiang
    Wang, Ling-Ling
    JOURNAL OF MODERN OPTICS, 2018, 65 (03) : 268 - 274
  • [22] Tunable plasmon-induced transparency based on asymmetric H-shaped graphene metamaterials
    田雨宸
    贾微
    任佩雯
    范春珍
    ChinesePhysicsB, 2018, 27 (12) : 301 - 307
  • [23] Versatile terahertz graphene metasurface based on plasmon-induced transparency
    Xie, Qun
    Guo, Linhui
    Zhang, Zexuan
    Gao, Panpan
    Wang, Mei
    Xia, Feng
    Zhang, Kun
    Sun, Peng
    Dong, Lifeng
    Yun, Maojin
    APPLIED SURFACE SCIENCE, 2022, 604
  • [24] Dynamically Tunable Plasmon-Induced Transparency in On-chip Graphene-Based Asymmetrical Nanocavity-Coupled Waveguide System
    Qiu, Pingping
    Qiu, Weibin
    Lin, Zhili
    Chen, Houbo
    Ren, Junbo
    Wang, Jia-Xian
    Kan, Qiang
    Pan, Jiao-Qing
    NANOSCALE RESEARCH LETTERS, 2017, 12
  • [25] Graphene-based tunable plasmon induced transparency in gold strips
    Habib, Mohsin
    Rashed, Alireza Rahimi
    Ozbay, Ekmel
    Caglayan, Humeyra
    OPTICAL MATERIALS EXPRESS, 2018, 8 (04): : 1069 - 1074
  • [26] A multi-functional tunable terahertz graphene metamaterial based on plasmon-induced transparency
    Yang, Youpeng
    Fan, Shuting
    Zhao, Jingjing
    Xu, Jinzhuo
    Zhu, Jianfang
    Wang, Xiaoran
    Qian, Zhengfang
    DIAMOND AND RELATED MATERIALS, 2024, 141
  • [27] Terahertz plasmon-induced transparency and absorption in compact graphene-based coupled nanoribbons
    Noual, Adnane
    Amrani, Madiha
    El Boudouti, El Houssaine
    Pennec, Yan
    Djafari-Rouhani, Bahram
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2019, 125 (03):
  • [28] Tunable multiple plasmon-induced transparencies in multiple T-shaped cavities waveguide based on Dirac semimetals
    Chen, Junya
    Zhang, Huifang
    Gu, Xin
    He, Ying
    Ren, Hongshi
    JOURNAL OF NANOPHOTONICS, 2023, 17 (02)
  • [29] Dynamically Tunable Graphene Plasmon-Induced Transparency in the Terahertz Region
    Yao, Gang
    Ling, Furi
    Yue, Jin
    Luo, Qin
    Yao, Jianquan
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2016, 34 (16) : 3937 - 3942
  • [30] A terahertz sensor based on graphene metamaterial with tunable double plasmon-induced transparency
    Wang, Juncheng
    Tu, Shan
    Chen, Tao
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2024, 155