Sign-changing solutions for a class of Schrodinger equations with vanishing potentials

被引:25
作者
Ambrosio, Vincenzo [1 ]
Isernia, Teresa [2 ]
机构
[1] Univ Urbino Carlo Bo, Dipartimento Sci Pure & Applicate DiSPeA, Piazza Repubbl 13, I-61029 Urbino, Pesaro & Urbino, Italy
[2] Univ Napoli Federico II, Dipartimento Matemat & Applicazioni Renato Caccio, Via Cintia 1, I-80126 Naples, Italy
关键词
Fractional Laplacian; sign-changing solutions; Deformation Lemma; FRACTIONAL LAPLACIAN; NODAL SOLUTIONS; GROUND-STATES; EXISTENCE; INFINITY; SYMMETRY; OPERATOR; DOMAINS;
D O I
10.4171/RLM/797
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a class of fractional Schrodinger equations with potentials vanishing at infinity. By using a minimization argument and a quantitative Deformation Lemma, we prove the existence of a sign-changing solution.
引用
收藏
页码:127 / 152
页数:26
相关论文
共 37 条
[1]   Existence of least energy nodal solution for a Schrodinger-Poisson system in bounded domains [J].
Alves, Claudianor O. ;
Souto, Marco A. S. .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2014, 65 (06) :1153-1166
[2]   Existence of solutions for a class of nonlinear Schrodinger equations with potential vanishing at infinity [J].
Alves, Claudianor O. ;
Souto, Marco A. S. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (04) :1977-1991
[3]  
Ambrosetti A, 2005, DIFFER INTEGRAL EQU, V18, P1321
[4]  
Ambrosetti A, 2005, J EUR MATH SOC, V7, P117
[5]  
Ambrosio V, 2018, ADV DIFFERENTIAL EQU, V23, P455
[8]   Existence of least energy positive, negative and nodal solutions for a class of p&q-problems with potentials vanishing at infinity [J].
Barile, Sara ;
Figueiredo, Giovany Malcher .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 427 (02) :1205-1233
[9]   On some critical problems for the fractional Laplacian operator [J].
Barrios, B. ;
Colorado, E. ;
de Pablo, A. ;
Sanchez, U. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (11) :6133-6162
[10]   Partial symmetry of least energy nodal solutions to some variational problems [J].
Bartsch, T ;
Weth, T ;
Willew, M .
JOURNAL D ANALYSE MATHEMATIQUE, 2005, 96 (1) :1-18