A Picard-S Iterative Method for Approximating Fixed Point of Weak-Contraction Mappings

被引:29
作者
Gursoy, Faik [1 ]
机构
[1] Adiyaman Univ, Fac Arts & Sci, Dept Math, TR-02040 Adiyaman, Turkey
关键词
Picard-S iterative scheme; Weak-Contraction mappings; Convergence; Rate of Convergence; Data Dependence; Volterra-Fredholm functional nonlinear integral equation;
D O I
10.2298/FIL1610829G
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the convergence analysis of a Picard-S iterative method for a particular class of weak-contraction mappings and give a data dependence result for fixed points of these mappings. Also, we show that the Picard-S iterative method can be used to approximate the unique solution of mixed type Volterra-Fredholm functional nonlinear integral equation x(t) = F(t, x(t), integral(t1)(a1) center dot center dot center dot integral(tm)(am) K(t, s, x(s))ds, integral(b1)(a1) center dot center dot center dot integral(bm)(am) H(t, s, x(s))ds,). Furthermore, with the help of the Picard-S iterative method, we establish a data dependence result for the solution of integral equation mentioned above.
引用
收藏
页码:2829 / 2845
页数:17
相关论文
共 24 条
[1]  
Agarwal RP, 2007, J NONLINEAR CONVEX A, V8, P61
[2]  
Berinde V., 2004, FIXED POINT THEORY A, V2, P97
[3]  
Berinde V, 2007, LECT NOTES MATH, V1912, P1
[4]  
Chugh R., 2012, Am. J. Comput. Math, V2, P345, DOI [DOI 10.4236/ajcm.2012.24048, 10.4236/ajcm.2012.24048, DOI 10.4236/AJCM.2012.24048]
[5]  
Ciric L., 2010, INDIAN J MATH, V52, P429
[6]  
Craciun C, 2011, FIXED POINT THEOR-RO, V12, P57
[7]  
Gursoy F., 2014, ARXIV14032546, P1
[8]   Data dependence results of new multi-step and S-iterative schemes for contractive-like operators [J].
Gursoy, Faik ;
Karakaya, Vatan ;
Rhoades, Billy E. .
FIXED POINT THEORY AND APPLICATIONS, 2013,
[9]   On rate of convergence of various iterative schemes [J].
Hussain, Nawab ;
Rafiq, Arif ;
Damjanovic, Bosko ;
Lazovic, Rade .
FIXED POINT THEORY AND APPLICATIONS, 2011,
[10]   FIXED-POINTS BY A NEW ITERATION METHOD [J].
ISHIKAWA, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 44 (01) :147-150