A Single Scalable LSTM Model for Short-Term Forecasting of Massive Electricity Time Series
被引:16
作者:
Alonso, Andres M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Carlos III Madrid, Dept Stat, Getafe 12628903, Spain
Inst Flores Lemus, Calle Madrid 126, Getafe 28903, SpainUniv Carlos III Madrid, Dept Stat, Getafe 12628903, Spain
Alonso, Andres M.
[1
,2
]
Nogales, Francisco J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Carlos III Madrid, Dept Stat, Getafe 12628903, Spain
UC3M Santander Big Data Inst IBiDat, Avda Univ 30, Leganes 28911, SpainUniv Carlos III Madrid, Dept Stat, Getafe 12628903, Spain
Nogales, Francisco J.
[1
,3
]
Ruiz, Carlos
论文数: 0引用数: 0
h-index: 0
机构:
Univ Carlos III Madrid, Dept Stat, Getafe 12628903, Spain
UC3M Santander Big Data Inst IBiDat, Avda Univ 30, Leganes 28911, SpainUniv Carlos III Madrid, Dept Stat, Getafe 12628903, Spain
Ruiz, Carlos
[1
,3
]
机构:
[1] Univ Carlos III Madrid, Dept Stat, Getafe 12628903, Spain
[2] Inst Flores Lemus, Calle Madrid 126, Getafe 28903, Spain
[3] UC3M Santander Big Data Inst IBiDat, Avda Univ 30, Leganes 28911, Spain
Most electricity systems worldwide are deploying advanced metering infrastructures to collect relevant operational data. In particular, smart meters allow tracking electricity load consumption at a very disaggregated level and at high frequency rates. This data opens the possibility of developing new forecasting models with a potential positive impact on electricity systems. We present a general methodology that can process and forecast many smart-meter time series. Instead of using traditional and univariate approaches, we develop a single but complex recurrent neural-network model with long short-term memory that can capture individual consumption patterns and consumptions from different households. The resulting model can accurately predict future loads (short-term) of individual consumers, even if these were not included in the original training set. This entails a great potential for large-scale applications as once the single network is trained, accurate individual forecast for new consumers can be obtained at almost no computational cost. The proposed model is tested under a large set of numerical experiments by using a real-world dataset with thousands of disaggregated electricity consumption time series. Furthermore, we explore how geo-demographic segmentation of consumers may impact the forecasting accuracy of the model.
机构:
Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Hubei, Peoples R ChinaHuazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Hubei, Peoples R China
Ahmad, Tanveer
Chen, Huanxin
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Hubei, Peoples R ChinaHuazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Hubei, Peoples R China
机构:
King Abdullah Univ Sci & Technol, Thuwal 239556900, Saudi Arabia
Monash Business Sch, Clayton, Vic 3800, AustraliaKing Abdullah Univ Sci & Technol, Thuwal 239556900, Saudi Arabia
Ben Taieb, Souhaib
Huser, Raphael
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol, Thuwal 239556900, Saudi ArabiaKing Abdullah Univ Sci & Technol, Thuwal 239556900, Saudi Arabia
Huser, Raphael
Hyndman, Rob J.
论文数: 0引用数: 0
h-index: 0
机构:
Monash Business Sch, Clayton, Vic 3800, AustraliaKing Abdullah Univ Sci & Technol, Thuwal 239556900, Saudi Arabia
Hyndman, Rob J.
Genton, Marc G.
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol, Thuwal 239556900, Saudi ArabiaKing Abdullah Univ Sci & Technol, Thuwal 239556900, Saudi Arabia
机构:
Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Hubei, Peoples R ChinaHuazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Hubei, Peoples R China
Ahmad, Tanveer
Chen, Huanxin
论文数: 0引用数: 0
h-index: 0
机构:
Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Hubei, Peoples R ChinaHuazhong Univ Sci & Technol, Sch Energy & Power Engn, Wuhan 430074, Hubei, Peoples R China
机构:
King Abdullah Univ Sci & Technol, Thuwal 239556900, Saudi Arabia
Monash Business Sch, Clayton, Vic 3800, AustraliaKing Abdullah Univ Sci & Technol, Thuwal 239556900, Saudi Arabia
Ben Taieb, Souhaib
Huser, Raphael
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol, Thuwal 239556900, Saudi ArabiaKing Abdullah Univ Sci & Technol, Thuwal 239556900, Saudi Arabia
Huser, Raphael
Hyndman, Rob J.
论文数: 0引用数: 0
h-index: 0
机构:
Monash Business Sch, Clayton, Vic 3800, AustraliaKing Abdullah Univ Sci & Technol, Thuwal 239556900, Saudi Arabia
Hyndman, Rob J.
Genton, Marc G.
论文数: 0引用数: 0
h-index: 0
机构:
King Abdullah Univ Sci & Technol, Thuwal 239556900, Saudi ArabiaKing Abdullah Univ Sci & Technol, Thuwal 239556900, Saudi Arabia