From the special 2+1 Toda lattice to the Kadomtsev-Petviashvili equation

被引:110
作者
Cao, CW [1 ]
Geng, XG
Wu, YT
机构
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450052, Henan, Peoples R China
[2] Hong Kong Baptist Univ, Dept Comp Sci, Hong Kong, Peoples R China
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1999年 / 32卷 / 46期
关键词
D O I
10.1088/0305-4470/32/46/306
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The nonlinearization of the eigenvalue problems associated with the Toda hierarchy and the coupled Korteweg-de Vries (KdV) hierarchy leads to an integrable symplectic map S and an integrable Hamiltonian system (H-0), respectively. It is proved that S and (H-0) have the same integrals {H-k} The quasi-periodic solution of the (2 + 1)-dimensional Kadomtsev-Petviashvili equation is split into three Hamiltonian systems (H-0), (H-1), (H-2), while that of the special (2 + 1)-dimensional Toda equation is separated into (H-0), (H-1) plus the discrete Bow generated by the symplectic map S. A clear evolution picture of various flows is given through the 'window' of Abel-Jacobi coordinates. The explicit theta-function solutions are obtained by resorting to this separation technique.
引用
收藏
页码:8059 / 8078
页数:20
相关论文
共 24 条
[1]  
Ablowitz MJ, 1981, SIAM STUDIES APPL MA
[2]  
[Anonymous], 1978, Principles of algebraic geometry
[3]  
Arnold VI., 1989, MATH METHODS CLASSIC, P520, DOI 10.1007/978-1-4757-1693-1
[4]  
BELOKOLOS ED, 1994, ALGEBROGEOMETRIC APP
[5]   INTEGRABLE SYMPLECTIC MAPS [J].
BRUSCHI, M ;
RAGNISCO, O ;
SANTINI, PM ;
TU, GZ .
PHYSICA D, 1991, 49 (03) :273-294
[6]   Relation between the Kadometsev-Petviashvili equation and the confocal involutive system [J].
Cao, CW ;
Wu, YT ;
Geng, XG .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (08) :3948-3970
[7]  
CAO CW, 1990, J PHYS A-MATH GEN, V23, P4117, DOI 10.1088/0305-4470/23/18/017
[8]   PARAMETRIC REPRESENTATION OF THE FINITE-BAND SOLUTION OF THE HEISENBERG EQUATION [J].
CAO, CW .
PHYSICS LETTERS A, 1994, 184 (4-5) :333-338
[9]  
Cao CW., 1990, NONLINEAR PHYSICS RE, P68
[10]   THE CONSTRAINT OF THE KADOMTSEV-PETVIASHVILI EQUATION AND ITS SPECIAL SOLUTIONS [J].
CHENG, Y ;
LI, YS .
PHYSICS LETTERS A, 1991, 157 (01) :22-26