In vivo imaging with cellular resolution of bone marrow cells transplanted into the ischemic brain of a mouse

被引:15
作者
Dinh, Alexy Tran
Kubis, Nathalie
Tomita, Yutaka
Karaszewski, Bartosz
Calando, Yolande
Oudina, Karim
Petite, Herve
Seylaz, Jacques
Pinard, Elisabeth
机构
[1] Univ Paris 07, Cardiovasc Res Ctr, INSERM, U689, F-75010 Paris, France
[2] Univ Paris 07, Lab Biomecan & Biomat Osteoarticulaires, CNRS, UMR7052, F-75221 Paris 05, France
关键词
mouse; brain; ischemia; confocal microscopy; fluorescence imaging; stem cells; bone marrow cells;
D O I
10.1016/j.neuroimage.2006.01.019
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The aim of the study was to monitor in vivo and noninvasively the fate of single bone marrow cells (BMCs) transplanted into the ischemic brain of unirradiated mice. In vivo imaging was performed through a closed cranial window, throughout the 2 weeks following cell transplantation, using laser-scanning confocal fluorescence microscopy. The window was chronically implanted above the left parieto-occipital cortex in C57BL/6J adult mice. BMC (3 x 10(5) nucleated cells in 0.5 mu L medium) from 5-week-old transgenic mice, ubiquitously expressing green fluorescent protein (GFP), was transplanted into the ipsilateral cortex 24 h after the induction of focal ischemia by coagulation of the left middle cerebral artery (n = 15). Three nonischemic mice served as controls. Repeated in vivo imaging, up to a depth of 200 mu m, revealed that BMCs survived within the ischemic and peri-ischemic cortex, migrated significantly towards the lesion, proliferated and adopted a microglia-like morphology over 2 weeks. These results were confirmed using ex vivo imaging after appropriate immunocytochemical treatments. This study indicates that confocal fluorescence microscopy is a reliable and unique tool to repeatedly assess with cellular resolution the in vivo dynamic fate of fluorescent cells transplanted into a mouse brain. These results also provide the first in vivo findings on the fate of single BMCs transplanted into the ischemic brain of unirradiated mice. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:958 / 967
页数:10
相关论文
共 40 条
[1]   Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes [J].
Alvarez-Dolado, M ;
Pardal, R ;
Garcia-Vardugo, JM ;
Fike, JR ;
Lee, HO ;
Pfeffer, K ;
Lois, C ;
Morrison, SJ ;
Alvarez-Buylla, A .
NATURE, 2003, 425 (6961) :968-973
[2]   From marrow to brain: Expression of neuronal phenotypes in adult mice [J].
Brazelton, TR ;
Rossi, FMV ;
Keshet, GI ;
Blau, HM .
SCIENCE, 2000, 290 (5497) :1775-1779
[3]   Iron oxide MR contrast agents for molecular and cellular imaging [J].
Bulte, JWM ;
Kraitchman, DL .
NMR IN BIOMEDICINE, 2004, 17 (07) :484-499
[4]   Stem cell plasticity: from transdifferentiation to macrophage fusion [J].
Camargo, FD ;
Chambers, SM ;
Goodell, MA .
CELL PROLIFERATION, 2004, 37 (01) :55-65
[5]   Two-photon imaging of capillary blood flow in olfactory bulb glomeruli [J].
Chaigneau, E ;
Oheim, M ;
Audinat, E ;
Charpak, S .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (22) :13081-13086
[6]   Intracerebral transplantation of bone marrow with BDNF after MCAo in rat [J].
Chen, JL ;
Li, Y ;
Chopp, M .
NEUROPHARMACOLOGY, 2000, 39 (05) :711-716
[7]   Recovery recapitulates ontogeny [J].
Cramer, SC ;
Chopp, M .
TRENDS IN NEUROSCIENCES, 2000, 23 (06) :265-271
[8]   Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice [J].
Eglitis, MA ;
Mezey, E .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (08) :4080-4085
[9]  
Franklin K. B. J., 2013, PAXINOS FRANKLINS MO
[10]   Bone marrow as a source of endothelial cells and NeuN-expressing cells after stroke [J].
Hess, DC ;
Hill, WD ;
Martin-Studdard, A ;
Carroll, J ;
Brailer, J ;
Carothers, J .
STROKE, 2002, 33 (05) :1362-1368