Multipath Wide-Bandwidth CMOS Magnetic Sensors

被引:50
作者
Jiang, Junfeng [1 ,2 ]
Makinwa, Kofi A. A. [1 ]
机构
[1] Delft Univ Technol, Elect Instrumentat Lab, Delft, Netherlands
[2] Texas Instruments Deutschland GmbH, D-85356 Freising Weihenstephan, Germany
关键词
CMOS; Hall sensor; magnetic sensor; multipath; pickup coil; ripple reduction loop (RRL); HALL SENSOR; AMPLIFIER;
D O I
10.1109/JSSC.2016.2619711
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a multipath multisensor architecture for CMOS magnetic sensors, which effectively extends their bandwidth without compromising either their offset or resolution. Two designs utilizing the proposed architecture were fabricated in a 0.18- mu m standard CMOS process. In the first, the combination of spinning-current Hall sensors and nonspun Hall sensors achieves an offset of 40 mu T and a resolution of 272 mu T-rms in a bandwidth of 400 kHz, which is 40 times more than previous low-offset CMOS Hall sensors. In the second, the combination of spinning-current Hall sensors and pickup coils achieves the same offset, with a resolution of 210 mu T-rms in a further extended bandwidth of 3 MHz, which is the widest bandwidth ever reported for a CMOS magnetic sensor.
引用
收藏
页码:198 / 209
页数:12
相关论文
共 32 条
[1]   Single current sensor technique in the DC link of three-phase PWM-VS inverters: A review and a novel solution [J].
Blaabjerg, F ;
Pedersen, JK ;
Jaeger, U ;
Thoegersen, P .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 1997, 33 (05) :1241-1253
[2]   Magnetic field amplification by slender cuboid-shaped magnetic concentrators with a single gap [J].
Brugger, Simon ;
Paul, Oliver .
SENSORS AND ACTUATORS A-PHYSICAL, 2010, 157 (01) :135-139
[3]   A 0.35um-CMOS, wide-band, low-noise HALL magnetometer for current sensing applications [J].
Dimitropoulos, P. D. ;
Drljaca, P. M. ;
Popovic, R. S. .
2007 IEEE SENSORS, VOLS 1-3, 2007, :884-887
[4]  
Elez A., 2010, 19 INT C EL MACH ICE, P1
[5]   A 1.8 μW 60 nV/√Hz Capacitively-Coupled Chopper Instrumentation Amplifier in 65 nm CMOS for Wireless Sensor Nodes [J].
Fan, Qinwen ;
Sebastiano, Fabio ;
Huijsing, Johan H. ;
Makinwa, Kofi A. A. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2011, 46 (07) :1534-1543
[6]   A low-power low-noise CMOS amplifier for neural recording applications [J].
Harrison, RR ;
Charles, C .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2003, 38 (06) :958-965
[7]   High Area-Efficient DC-DC Converter With High Reliability Using Time-Mode Miller Compensation (TMMC) [J].
Hong, Sung-Wan ;
Kong, Tae-Hwang ;
Park, Sang-Hui ;
Park, Changbyung ;
Jung, Seungchul ;
Lee, Sungwoo ;
Cho, Gyu-Hyeong .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2013, 48 (10) :2457-2468
[8]  
Jiang JF, 2015, IEEE ASIAN SOLID STA, P53
[9]  
Jiang JF, 2016, ISSCC DIG TECH PAP I, V59, P204, DOI 10.1109/ISSCC.2016.7417978
[10]   A Continuous-Time Ripple Reduction Technique for Spinning-Current Hall Sensors [J].
Jiang, Junfeng ;
Kindt, Wilko J. ;
Makinwa, Kofi A. A. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2014, 49 (07) :1525-1534