The weighted Hardy spaces associated to self-adjoint operators and their duality on product spaces

被引:2
作者
Liu, Suying [1 ]
Yang, Minghua [2 ]
机构
[1] Northwestern Polytech Univ, Sch Sci, 127 Youyi W Rd, Xian 710000, Shaanxi, Peoples R China
[2] Jiangxi Univ Finance & Econ, Sch Informat Technol, Jupu Rd, Nanchang 330032, Jiangxi, Peoples R China
关键词
weighted Hardy space; operator; Gaussian estimate; duality; product space; ELLIPTIC-OPERATORS; ATOMIC DECOMPOSITION; NORM INEQUALITIES; HP-THEORY; BMO; VERSION;
D O I
10.21136/CMJ.2018.0469-16
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L be a non-negative self-adjoint operator acting on L (2)(R (n) ) satisfying a pointwise Gaussian estimate for its heat kernel. Let w be an A (r) weight on R (n) x R (n) , 1 < r < a. In this article we obtain a weighted atomic decomposition for the weighted Hardy space H (L,w) (p) (R (n) xR (n) ), 0 < p 1 associated to L. Based on the atomic decomposition, we show the dual relationship between H (L,w) (1)(R (n) x R (n) ) and BMO (L,w) (R (n) x R (n) ).
引用
收藏
页码:415 / 431
页数:17
相关论文
共 42 条
[21]   Old and new Morrey spaees with heat kernel bounds [J].
Duong, Xuan Thinh ;
Xiao, Jie ;
Yan, Lixin .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2007, 13 (01) :87-111
[22]   Hardy spaces associated to operators satisfying Davies-Gaffney estimates and bounded holomorphic functional calculus [J].
Duong, Xuan Thinh ;
Li, Ji .
JOURNAL OF FUNCTIONAL ANALYSIS, 2013, 264 (06) :1409-1437
[23]   AP WEIGHTS AND SINGULAR-INTEGRALS [J].
FEFFERMAN, R .
AMERICAN JOURNAL OF MATHEMATICS, 1988, 110 (05) :975-987
[24]  
Garcia-Cuerva J., 1985, WEIGHTED NORM INEQUA
[25]   HP THEORY FOR THE POLY-DISC [J].
GUNDY, RF ;
STEIN, EM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1979, 76 (03) :1026-1029
[26]  
Hofmann S, 2011, MEM AM MATH SOC, V214, P1
[27]   Hardy and BMO spaces associated to divergence form elliptic operators [J].
Hofmann, Steve ;
Mayboroda, Svitlana .
MATHEMATISCHE ANNALEN, 2009, 344 (01) :37-116
[28]   New Orlicz-Hardy spaces associated with divergence form elliptic operators [J].
Jiang, Renjin ;
Yang, Dachun .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (04) :1167-1224
[29]  
Journe J-L., 1985, REV MAT IBEROAMERICA, V1, P55, DOI DOI 10.4171/RMI/15
[30]  
Kerkyacharian G, 2015, T AM MATH SOC, V367, P121