The weighted Hardy spaces associated to self-adjoint operators and their duality on product spaces

被引:2
作者
Liu, Suying [1 ]
Yang, Minghua [2 ]
机构
[1] Northwestern Polytech Univ, Sch Sci, 127 Youyi W Rd, Xian 710000, Shaanxi, Peoples R China
[2] Jiangxi Univ Finance & Econ, Sch Informat Technol, Jupu Rd, Nanchang 330032, Jiangxi, Peoples R China
关键词
weighted Hardy space; operator; Gaussian estimate; duality; product space; ELLIPTIC-OPERATORS; ATOMIC DECOMPOSITION; NORM INEQUALITIES; HP-THEORY; BMO; VERSION;
D O I
10.21136/CMJ.2018.0469-16
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let L be a non-negative self-adjoint operator acting on L (2)(R (n) ) satisfying a pointwise Gaussian estimate for its heat kernel. Let w be an A (r) weight on R (n) x R (n) , 1 < r < a. In this article we obtain a weighted atomic decomposition for the weighted Hardy space H (L,w) (p) (R (n) xR (n) ), 0 < p 1 associated to L. Based on the atomic decomposition, we show the dual relationship between H (L,w) (1)(R (n) x R (n) ) and BMO (L,w) (R (n) x R (n) ).
引用
收藏
页码:415 / 431
页数:17
相关论文
共 42 条
[1]  
Anh B. T., WEIGHTED HARDY SPACE
[2]  
[Anonymous], REV MAT IBEROAM
[3]  
[Anonymous], 1989, CAMBRIDGE TRACTS MAT
[4]  
[Anonymous], 2005, London Mathematical Society Monographs Series
[5]  
Auscher P., 2005, BOUNDEDNESS BA UNPUB
[6]   Hardy spaces of differential forms on Riemannian manifolds [J].
Auscher, Pascal ;
McIntosh, Alan ;
Russ, Emmanuel .
JOURNAL OF GEOMETRIC ANALYSIS, 2008, 18 (01) :192-248
[7]   Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part I: General operator theory and weights [J].
Auscher, Pascal ;
Martell, Jose Maria .
ADVANCES IN MATHEMATICS, 2007, 212 (01) :225-276
[8]   Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part II: Off-diagonal estimates on spaces of homogeneous type [J].
Auscher, Pascal ;
Martell, Jose Maria .
JOURNAL OF EVOLUTION EQUATIONS, 2007, 7 (02) :265-316
[9]  
Auscher P, 2007, MEM AM MATH SOC, V186, pXI
[10]   Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part III: Harmonic analysis of elliptic operators [J].
Auscher, Pascal ;
Martell, Jose Maria .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 241 (02) :703-746