Scaling of the propagation of epidemic in a system of mobile agents

被引:55
作者
González, MC [1 ]
Herrmann, HJ [1 ]
机构
[1] Univ Stuttgart, Inst Comp Applicat 1, D-70569 Stuttgart, Germany
关键词
non-equilibrium phase transitions; contact process; complex networks; epidemic dynamics;
D O I
10.1016/j.physa.2004.05.017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a two-dimensional system of agents modeled by molecular dynamics, we simulate epidemics spreading, which was recently studied on complex networks. Our resulting network model is time-evolving. We study the transitions to spreading as function of density, temperature and infection time. In addition, we analyze the epidemic threshold associated to a power-law distribution of infection times. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:741 / 748
页数:8
相关论文
共 10 条
[1]  
DEGENNES PG, 1978, CR ACAD SCI B PHYS, V286, P131
[2]   DIRECTED PERCOLATION IN 2+1 DIMENSIONS [J].
GRASSBERGER, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (17) :3673-3679
[3]   EPIDEMIC MODEL WITH IMMUNIZATION [J].
HEDE, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (10) :L439-L443
[4]   Non-equilibrium critical phenomena and phase transitions into absorbing states [J].
Hinrichsen, H .
ADVANCES IN PHYSICS, 2000, 49 (07) :815-958
[5]  
KERSTEIN AR, 1984, PHYS REV B, V30, P2980, DOI 10.1103/PhysRevB.30.2980
[6]  
LAGUES M, 1979, CR ACAD SCI B PHYS, V288, P339
[7]  
Marro J., 1999, NONEQUILIBRIUM PHASE
[8]  
MOLLISON D, 1977, J ROY STAT SOC B MET, V39, P283
[9]  
Rapaport D.C., 1995, ART MOL DYNAMICS SIM
[10]   Large-scale topological and dynamical properties of the Internet -: art. no. 066130 [J].
Vázquez, A ;
Pastor-Satorras, R ;
Vespignani, A .
PHYSICAL REVIEW E, 2002, 65 (06) :1-066130