Investigation on LiBH4-CaH2 composite and its potential for thermal energy storage

被引:24
作者
Li, Yang [1 ]
Li, Ping [1 ]
Qu, Xuanhui [1 ]
机构
[1] Univ Sci & Technol Beijing, Inst Adv Mat & Technol, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
REVERSIBLE HYDROGEN STORAGE; METAL HYDRIDE; CA(BH4)(2); CAH2/LIBH4; KINETICS; MG; TI;
D O I
10.1038/srep41754
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The LiBH4/CaH2 composite are firstly studied as Concentrating Solar Power Thermal Storage Material. The LiBH4/CaH2 composite according to the stoichiometric ratio are synthesized by high-energy ball milling method. The kinetics, thermodynamics and cycling stability of LiBH4/CaH2 composite are investigated by XRD (X-ray diffraction), DSC (Differential scanning calorimeter) and TEM (Transmission electron microscope). The reaction enthalpy of LiBH4/CaH2 composite is almost 60 kJ/mol H-2 and equilibrium pressure is 0.482 MPa at 450 degrees C. The thermal storage density of LiBH4/CaH2 composite is 3504.6 kJ/kg. XRD results show that the main phase after dehydrogenation is LiH and CaB6. The existence of TiCl3 and NbF5 can effectively enhance the cycling perfomance of LiBH4/CaH2 composite, with 6-7 wt% hydrogen capacity after 10 cycles. The high thermal storage density, high working temperature and low equilibrium pressure make LiBH4/CaH2 composite a potential thermal storage material.
引用
收藏
页数:8
相关论文
共 33 条
[1]   A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS) [J].
Agyenim, Francis ;
Hewitt, Neil ;
Eames, Philip ;
Smyth, Mervyn .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (02) :615-628
[2]   Predicting reaction equilibria for destabilized metal hydride decomposition reactions for reversible hydrogen storage [J].
Alapati, Sudhakar V. ;
Johnson, J. Karl ;
Sholl, David S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (04) :1584-1591
[3]   Identification of destabilized metal hydrides for hydrogen storage using first principles calculations [J].
Alapati, SV ;
Johnson, JK ;
Sholl, DS .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (17) :8769-8776
[4]  
Birol F., 2010, World Energy Outlook 2010, DOI DOI 10.5206/CJSOTL-RCACEA.2010.1.8
[5]  
Felderhoff M., 2013, Green, V3, P113, DOI 10.1515/green-2013-0011
[6]   Improved hydrogen storage properties of combined Ca(BH4)2 and LiBH4 system motivated by addition of LaMg3 assisted with ball milling in H2 [J].
Gu, Jian ;
Gao, Mingxia ;
Wen, Linjiao ;
Huang, Jingjun ;
Liu, Yongfeng ;
Pan, Hongge .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2015, 40 (36) :12325-12335
[7]   Concentrating Solar Thermal Heat Storage Using Metal Hydrides [J].
Harries, David N. ;
Paskevicius, Mark ;
Sheppard, Drew A. ;
Price, Tobias Edward Cameron ;
Buckley, Craig E. .
PROCEEDINGS OF THE IEEE, 2012, 100 (02) :539-549
[8]   Hydrogen storage in a CaH2/LiBH4 destabilized metal hydride system [J].
Ibikunle, A. ;
Goudy, A. J. ;
Yang, H. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2009, 475 (1-2) :110-115
[9]   Kinetics and modeling studies of the CaH2/LiBH4, MgH2/LiBH4, Ca(BH4)2 and Mg(BH4)2 systems [J].
Ibikunle, A. A. ;
Sabitu, S. T. ;
Goudy, A. J. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 556 :45-50
[10]   Hydrogen storage properties of nanoconfined LiBH4-Ca(BH4)2 [J].
Javadian, Payam ;
Sheppard, Drew A. ;
Buckley, Craig E. ;
Jensen, Torben R. .
NANO ENERGY, 2015, 11 :96-103