Extending in Silico Protein Target Prediction Models to Include Functional Effects

被引:6
作者
Mervin, Lewis H. [1 ]
Afzal, Avid M. [1 ]
Brive, Lars [2 ]
Engkvist, Ola [3 ]
Bender, Andreas [1 ]
机构
[1] Univ Cambridge, Dept Chem, Ctr Mol Informat, Cambridge, England
[2] Cygnal Biosci, Pixbo, Sweden
[3] AstraZeneca, IMED Biotech Unit, Discovery Sci, Hit Discovery, Gothenburg, Sweden
基金
英国生物技术与生命科学研究理事会;
关键词
target prediction; activation; inhibition; cheminformatics; functional effects; mechanism-of-action; chemical space; AD-AUC; DECONVOLUTION; CYTOTOXICITY; DATABASES; DESIGN;
D O I
10.3389/fphar.2018.00613
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
In silico protein target deconvolution is frequently used for mechanism-of-action investigations; however existing protocols usually do not predict compound functional effects, such as activation or inhibition, upon binding to their protein counterparts. This study is hence concerned with including functional effects in target prediction. To this end, we assimilated a bioactivity training set for 332 targets, comprising 817,239 active data points with unknown functional effect (binding data) and 20,761,260 inactive compounds, along with 226,045 activating and 1,032,439 inhibiting data points from functional screens. Chemical space analysis of the data first showed some separation between compound sets (binding and inhibiting compounds were more similar to each other than both binding and activating or activating and inhibiting compounds), providing a rationale for implementing functional prediction models. We employed three different architectures to predict functional response, ranging from simplistic random forest models ('Arch1') to cascaded models which use separate binding and functional effect classification steps ('Arch2' and 'Arch3'), differing in the way training sets were generated. Fivefold stratified cross-validation outlined cascading predictions provides superior precision and recall based on an internal test set. We next prospectively validated the architectures using a temporal set of 153,467 of in-house data points (after a 4-month interim from initial data extraction). Results outlined Arch3 performed with the highest target class averaged precision and recall scores of 71% and 53%, which we attribute to the use of inactive background sets. Distance-based applicability domain (AD) analysis outlined that Arch3 provides superior extrapolation into novel areas of chemical space, and thus based on the results presented here, propose as the most suitable architecture for the functional effect prediction of small molecules. We finally conclude including functional effects could provide vital insight in future studies, to annotate cases of unanticipated functional changeover, as outlined by our CHRM1 case study.
引用
收藏
页数:13
相关论文
共 39 条
[1]   Evolving BioAssay Ontology (BAO): modularization, integration and applications [J].
Abeyruwan, Saminda ;
Vempati, Uma D. ;
Kuecuek-McGinty, Hande ;
Visser, Ubbo ;
Koleti, Amar ;
Mir, Ahsan ;
Sakurai, Kunie ;
Chung, Caty ;
Bittker, Joshua A. ;
Clemons, Paul A. ;
Brudz, Steve ;
Siripala, Anosha ;
Morales, Arturo J. ;
Romacker, Martin ;
Twomey, David ;
Bureeva, Svetlana ;
Lemmon, Vance ;
Schuerer, Stephan C. .
JOURNAL OF BIOMEDICAL SEMANTICS, 2014, 5
[2]   A new paradigm for navigating compound property related drug attrition [J].
Barton, Patrick ;
Riley, Robert J. .
DRUG DISCOVERY TODAY, 2016, 21 (01) :72-81
[3]   Pathway databases and tools for their exploitation: benefits, current limitations and challenges [J].
Bauer-Mehren, Anna ;
Furlong, Laura I. ;
Sanz, Ferran .
MOLECULAR SYSTEMS BIOLOGY, 2009, 5
[4]   Tactical Approaches to Interconverting GPCR Agonists and Antagonists [J].
Dosa, Peter I. ;
Amin, Elizabeth Ambrose .
JOURNAL OF MEDICINAL CHEMISTRY, 2016, 59 (03) :810-840
[5]  
Drakakis G., 2013, J CHEMINFORM S1, V5, pP34
[6]   Polypharmacological in Silico Bioactivity Profiling and Experimental Validation Uncovers Sedative-Hypnotic Effects of Approved and Experimental Drugs in Rat [J].
Drakakis, Georgios ;
Wafford, Keith A. ;
Brewerton, Suzanne C. ;
Bodkin, Michael J. ;
Evans, David A. ;
Bender, Andreas .
ACS CHEMICAL BIOLOGY, 2017, 12 (06) :1593-1602
[7]  
Gadaleta D., 2016, International journal of quantitativestructure-property relationships (IJQSPR), V1, P45, DOI [DOI 10.4018/IJQSPR.2016010102, 10.4018/IJQSPR.2016010102]
[8]   Design of new cognition enhancers: From computer prediction to synthesis and biological evaluation [J].
Geronikaki, AA ;
Dearden, JC ;
Filimonov, D ;
Galaeva, I ;
Garibova, TL ;
Gloriozova, T ;
Krajneva, V ;
Lagunin, A ;
Macaev, FZ ;
Molodavkin, G ;
Poroikov, VV ;
Pogrebnoi, SI ;
Shepeli, F ;
Voronina, TA ;
Tsitlakidou, M ;
Vlad, L .
JOURNAL OF MEDICINAL CHEMISTRY, 2004, 47 (11) :2870-2876
[9]   Applicability domain: towards a more formal definition [J].
Hanser, T. ;
Barber, C. ;
Marchaland, J. F. ;
Werner, S. .
SAR AND QSAR IN ENVIRONMENTAL RESEARCH, 2016, 27 (11) :865-881
[10]   Structural Overview of the Nuclear Receptor Superfamily: Insights into Physiology and Therapeutics [J].
Huang, Pengxiang ;
Chandra, Vikas ;
Rastinejad, Fraydoon .
ANNUAL REVIEW OF PHYSIOLOGY, 2010, 72 :247-272