Sobolev spaces associated to the harmonic oscillator

被引:73
作者
Bongioanni, B. [1 ]
Torrea, J. L.
机构
[1] Univ Nacl Litoral, Fac Ingn Qim, Dept Matemat, RA-3000 Santa Fe, Argentina
[2] Inst Matemat Aplicada Litoral, RA-3000 Santa Fe, Argentina
[3] Univ Autonoma Madrid, Fac Ciencias, Dept Matemat, E-28049 Madrid, Spain
来源
PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES | 2006年 / 116卷 / 03期
关键词
Hermite operator; potential spaces; Riesz transforms;
D O I
10.1007/BF02829750
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define the Hermite-Sobolev spaces naturally associated to the harmonic oscillator H = -Delta + \x\(2). Structural properties, relations with the classical Sobolev spaces, boundedness of operators and almost everywhere convergence of solutions of the Schrodinger equation are also considered.
引用
收藏
页码:337 / 360
页数:24
相关论文
共 14 条
  • [1] Carleson L., 1980, Euclidean harmonic analysis, V779, P5, DOI DOI 10.1007/BFB0087666
  • [2] COWLING MG, 1983, LECT NOTES MATH, V992, P83
  • [3] Dahlberg C. E., 1982, Harmonic analysis, V908, P205, DOI DOI 10.1007/BFB0093289
  • [4] Folland G.B., 1984, REAL ANAL MODERN TEC
  • [5] Lp-dimension free boundedness for Riesz transforms associated to Hermite functions
    Harboure, E
    de Rosa, L
    Segovia, C
    Torrea, JL
    [J]. MATHEMATISCHE ANNALEN, 2004, 328 (04) : 653 - 682
  • [6] Schrodinger equation and the oscillatory semigroup for the Hermite operator
    Nandakumaran, AK
    Ratnakumar, PK
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 224 (02) : 371 - 385
  • [7] RADHA R, 2004, J ANAL, V12, P183
  • [8] Stein E M., 1993, Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals
  • [9] Stein E. M., 1970, SINGULAR INTEGRALS D
  • [10] Poisson integrals and Riesz transforms for Hermite function expansions with weights
    Stempak, K
    Torrea, JL
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 202 (02) : 443 - 472