Mechanochemical Kinetics in Elastomeric Polymer Networks: Heterogeneity of Local Forces Results in Nonexponential Kinetics

被引:24
作者
Adhikari, Ramesh [1 ]
Makarov, Dmitrii E. [1 ,2 ]
机构
[1] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Chem, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
CATCH BONDS; FLUCTUATIONS; ACTIVATION; MECHANICS; DISTRIBUTIONS; MECHANOPHORE; STRESS; MODELS;
D O I
10.1021/acs.jpcb.6b12758
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A common approach to inducing selective mechanochemical transformations relies on embedding the target molecules (called mechanophores) within elastomeric polymer networks. Mechanical properties of such elastomers can also be modulated through the mechanochemical response of the constituent polymer chains. The inherent randomness in the molecular structure of such materials leads to heterogeneity of the local forces exerted on individual mechanophores. Here we use coarse-grained simulations to study the force distributions within random elastomeric networks and show that those distributions are close to exponential regardless of the applied macroscopic load, entanglement effects, or network parameters. Exponential form of the distribution allows one to completely characterize the mechanophore kinetics in terms of the mean value of the force. At the same time, heterogeneity of the local force affects the kinetics qualitatively: While a narrow force distribution around the mean would lead to exponential kinetics, exponential force distribution results in highly nonexponential kinetics, with a fast kinetic phase involving highly loaded molecules, followed by a slow phase dominated by unloaded molecules.
引用
收藏
页码:2359 / 2365
页数:7
相关论文
共 45 条
[1]   MICROSCOPIC MECHANICS OF FIBER NETWORKS [J].
ASTROM, J ;
SAARINEN, S ;
NISKANEN, K ;
KURKIJARVI, J .
JOURNAL OF APPLIED PHYSICS, 1994, 75 (05) :2383-2392
[2]   Prediction of reaction barriers and force-induced instabilities under mechanochemical conditions with an approximate model: A case study of the ring opening of 1,3-cyclohexadiene [J].
Bailey, Adrian ;
Mosey, Nicholas J. .
JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (04)
[3]   Molecular nanosprings in spider capture-silk threads [J].
Becker, N ;
Oroudjev, E ;
Mutz, S ;
Cleveland, JP ;
Hansma, PK ;
Hayashi, CY ;
Makarov, DE ;
Hansma, HG .
NATURE MATERIALS, 2003, 2 (04) :278-283
[4]  
BELL GI, 1978, SCIENCE, V200, P618, DOI 10.1126/science.347575
[5]   Mechanochemistry: The mechanical activation of covalent bonds [J].
Beyer, MK ;
Clausen-Schaumann, H .
CHEMICAL REVIEWS, 2005, 105 (08) :2921-2948
[6]   Molecular engineering of mechanophore activity for stress-responsive polymeric materials [J].
Brown, Cameron L. ;
Craig, Stephen L. .
CHEMICAL SCIENCE, 2015, 6 (04) :2158-2165
[7]   Mechanically-Induced Chemical Changes in Polymeric Materials [J].
Caruso, Mary M. ;
Davis, Douglas A. ;
Shen, Qilong ;
Odom, Susan A. ;
Sottos, Nancy R. ;
White, Scott R. ;
Moore, Jeffrey S. .
CHEMICAL REVIEWS, 2009, 109 (11) :5755-5798
[8]   Models of stress fluctuations in granular media [J].
Claudin, P ;
Bouchaud, JP ;
Cates, ME ;
Wittmer, JP .
PHYSICAL REVIEW E, 1998, 57 (04) :4441-4457
[9]   Model for force fluctuations in bead packs [J].
Coppersmith, SN ;
Liu, C ;
Majumdar, S ;
Narayan, O ;
Witten, TA .
PHYSICAL REVIEW E, 1996, 53 (05) :4673-4685
[10]   Universality in Nonlinear Elasticity of Biological and Polymeric Networks and Gels [J].
Dobrynin, Andrey V. ;
Carrillo, Jan-Michael Y. .
MACROMOLECULES, 2011, 44 (01) :140-146