Robust stabilization for uncertain time-delay systems with delay-dependence

被引:0
作者
Liu, Pin-Lin
Lu, Tung-Yi
Chen, I-Chang
机构
来源
ICICIC 2006: First International Conference on Innovative Computing, Information and Control, Vol 1, Proceedings | 2006年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The aim of this paper is to derive some sufficient stability conditions dependent of delay for stability. Based on Lyapunov-Krasovskii functional combining with LMI techniques, simple and delay-dependent robust exponential stability criteria are also derived The results have been illustrated by given numerical examples. We believe that the proposed schemas are applicable to robust control design.
引用
收藏
页码:595 / 598
页数:4
相关论文
共 13 条
[1]   SOME RESULTS ON DIFFERENTIAL-DIFFERENCE EQUATION [J].
BAILEY, HR ;
WILLIAMS, MZ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1966, 15 (03) :569-&
[2]  
Boy S., 1994, Linear MatrixInequalities in System and Control Theory
[3]   Delay-dependent robust stabilization of uncertain systems with multiple state delays [J].
Cao, YY ;
Sun, YX ;
Cheng, CW .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (11) :1608-1612
[4]  
CHEN TH, 2005, STUDY FAULT TOLERANC, P72
[5]   FURTHER RESULTS ON THE DELAY-INDEPENDENT ASYMPTOTIC STABILITY OF LINEAR-SYSTEMS [J].
HMAMED, A .
INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1991, 22 (06) :1127-1132
[6]  
Kolmanovskii V. B., 1986, MATH SCI ENG, V180
[7]   On the Liapunov-Krasovskii functionals for stability analysis of linear delay systems [J].
Kolmanovskii, VB ;
Niculescu, SI ;
Richard, JP .
INTERNATIONAL JOURNAL OF CONTROL, 1999, 72 (04) :374-384
[8]  
MANU MZ, 1987, TIME DELAYS ANAL OPT
[9]  
MOR TI, 1981, INT J CONTROL, V32, P1175
[10]   STABILITY OF X(T) = AX(T) + BX(T-TAU) [J].
MORI, T ;
KOKAME, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1989, 34 (04) :460-462