3-D inversion of gravity data in spherical coordinates with application to the GRAIL data

被引:62
作者
Liang, Qing [1 ,2 ]
Chen, Chao [1 ,3 ]
Li, Yaoguo [2 ]
机构
[1] China Univ Geosci, Inst Geophys & Geomat, Wuhan 430074, Peoples R China
[2] Colorado Sch Mines, Dept Geophys, Ctr Grav Elect & Magnet Studies, Golden, CO 80401 USA
[3] China Univ Geosci, Hubei Subsurface Mutiscale Imaging Lab, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
MOON; FIELD; ANOMALIES; THICKNESS; MODELS; PRISM; BASIN;
D O I
10.1002/2014JE004626
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Three-dimensional (3-D) inversion of gravity data has been widely used to reconstruct the density distributions of ore bodies, basins, crust, lithosphere, and upper mantle. For global model of 3-D density structures of planetary interior, such as the Earth, the Moon, or Mars, it is necessary to use an inversion algorithm that operates in the spherical coordinates. We develop a 3-D inversion algorithm formulated with specially designed model objective function and radial weighting function in the spherical coordinates. We present regional and global synthetic examples to illustrate the capability of the algorithm. The inverted results show density distribution features consistent with the true models. We also apply the algorithm to a set of lunar Bouguer gravity anomaly derived from the Gravity Recovery and Interior Laboratory (GRAIL) gravity field and obtain a lunar 3-D density distribution. High-density anomalies are clearly identified underlying lunar basins, a wide region of the lateral density heterogeneities that exist beneath the South Pole-Aitken basin are found, and low-density anomalies are distributed beneath the Feldspathic Highlands Terrane on the lunar far-side. The consistency of these results with those obtained independently from other existing methods verifies the newly developed algorithm.
引用
收藏
页码:1359 / 1373
页数:15
相关论文
共 56 条
  • [1] GOCE satellite derived gravity and gravity gradient corrected for topographic effect in the South Central Andes region
    Alvarez, Orlando
    Gimenez, Mario
    Braitenberg, Carla
    Folguera, Andres
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2012, 190 (02) : 941 - 959
  • [2] Anderson E. G., 1976, The effect of topography on solutions of Stokess problem
  • [3] Ancient Igneous Intrusions and Early Expansion of the Moon Revealed by GRAIL Gravity Gradiometry
    Andrews-Hanna, Jeffrey C.
    Asmar, Sami W.
    Head, James W., III
    Kiefer, Walter S.
    Konopliv, Alexander S.
    Lemoine, Frank G.
    Matsuyama, Isamu
    Mazarico, Erwan
    McGovern, Patrick J.
    Melosh, H. Jay
    Neumann, Gregory A.
    Nimmo, Francis
    Phillips, Roger J.
    Smith, David E.
    Solomon, Sean C.
    Taylor, G. Jeffrey
    Wieczorek, Mark A.
    Williams, James G.
    Zuber, Maria T.
    [J]. SCIENCE, 2013, 339 (6120) : 675 - 678
  • [4] [Anonymous], 2013, Parameter estimation and inverse problems, DOI DOI 10.1016/C2009-0-61134-X
  • [5] [Anonymous], 1977, Solution of illposed problems
  • [6] [Anonymous], 1991, Eos Trans. Am. Geophys. Union, DOI [DOI 10.1029/90E000319, 10.1029/90EO00319]
  • [7] Spherical prism gravity effects by Gauss-Legendre quadrature integration
    Asgharzadeh, M. F.
    von Frese, R. R. B.
    Kim, H. R.
    Leftwich, T. E.
    Kim, J. W.
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2007, 169 (01) : 1 - 11
  • [8] Blakely R.J, 1995, Potential Theory in Gravity and Magnetic Applications, Port Chester
  • [9] A stress interpretation scheme applied to lunar gravity and topography data
    Chambat, F.
    Valette, B.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2008, 113 (E2)
  • [10] OCCAMS INVERSION - A PRACTICAL ALGORITHM FOR GENERATING SMOOTH MODELS FROM ELECTROMAGNETIC SOUNDING DATA
    CONSTABLE, SC
    PARKER, RL
    CONSTABLE, CG
    [J]. GEOPHYSICS, 1987, 52 (03) : 289 - 300