Finitely presented simple modules over Leavitt path algebras

被引:37
作者
Ara, Pere [1 ]
Rangaswamy, Kulumani M. [2 ]
机构
[1] Univ Autonoma Barcelona, Fac Ciencies, Dept Matemat, Bellaterra 08193, Spain
[2] Univ Colorado, Dept Math, Colorado Springs, CO 80918 USA
关键词
Leavitt path algebra; Simple module; Primitive ideal; Finitely presented module; ARBITRARY GRAPHS; K-THEORY; QUIVERS;
D O I
10.1016/j.jalgebra.2014.06.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E be an arbitrary graph and K be any field. We construct various classes of non-isomorphic simple modules over the Leavitt path algebra L-K(E) induced by vertices which are infinite emitters, closed paths which are exclusive cycles and paths which are infinite, and call these simple modules Chen modules. It is shown that every primitive ideal of L-K(E) can be realized as the annihilator ideal of some Chen module. Our main result establishes the equivalence between a graph theoretic condition and various conditions concerning the structure of simple modules over L-K(E). (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:333 / 352
页数:20
相关论文
共 22 条
[1]   The Leavitt path algebra of a graph [J].
Abrams, G ;
Pino, GA .
JOURNAL OF ALGEBRA, 2005, 293 (02) :319-334
[2]   ON PRIME NONPRIMITIVE VON NEUMANN REGULAR ALGEBRAS [J].
Abrams, Gene ;
Bell, Jason P. ;
Rangaswamy, Kulumani M. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (05) :2375-2392
[3]   Flow invariants in the classification of Leavitt path algebras [J].
Abrams, Gene ;
Louly, Adel ;
Pardo, Enrique ;
Smith, Christopher .
JOURNAL OF ALGEBRA, 2011, 333 (01) :202-231
[4]   LEAVITT PATH ALGEBRAS OF FINITE GELFAND-KIRILLOV DIMENSION [J].
Alahmadi, Adel ;
Alsulami, Hamed ;
Jain, S. K. ;
Zelmanov, Efim .
JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2012, 11 (06)
[5]  
ANDERSON FW, 1974, GRAD TEXTS MATH, V13
[6]  
Anh P.N., 1987, Tsukuba J. Math., V11, P1
[7]   Stable rank of Leavitt path algebras [J].
Ara, P. ;
Pardo, E. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (07) :2375-2386
[8]   Nonstable K-theory for graph algebras [J].
Ara, P. ;
Moreno, M. A. ;
Pardo, E. .
ALGEBRAS AND REPRESENTATION THEORY, 2007, 10 (02) :157-178
[9]  
Ara P., REV MAT IBE IN PRESS
[10]  
Ara P, 2009, MUENSTER J MATH, V2, P5