High-efficiency Gaussian key reconciliation in continuous variable quantum key distribution

被引:31
作者
Bai, ZengLiang [1 ]
Wang, XuYang [1 ]
Yang, ShenShen [1 ]
Li, YongMin [1 ]
机构
[1] Shanxi Univ, Inst Optoelect, State Key Lab Quantum Opt & Quantum Opt Devices, Taiyuan 030006, Peoples R China
来源
SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY | 2016年 / 59卷 / 01期
基金
中国国家自然科学基金;
关键词
Gaussian key reconciliation; irregular LDPC codes; progressive-edge-growth; quasi-cyclic construction method; PARITY-CHECK CODES; GROWTH TANNER GRAPHS; PRIVACY AMPLIFICATION; LDPC CODES; INFORMATION; CAPACITY;
D O I
10.1007/s11433-015-5702-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Efficient reconciliation is a crucial step in continuous variable quantum key distribution. The progressive-edge-growth (PEG) algorithm is an efficient method to construct relatively short block length low-density parity-check (LDPC) codes. The qua-si-cyclic construction method can extend short block length codes and further eliminate the shortest cycle. In this paper, by combining the PEG algorithm and quasi-cyclic construction method, we design long block length irregular LDPC codes with high error-correcting capacity. Based on these LDPC codes, we achieve high-efficiency Gaussian key reconciliation with slice recon-ciliation based on multilevel coding/multistage decoding with an efficiency of 93.7%.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 27 条
[1]  
[Anonymous], QUANTUM CRYPTOGRAPHY
[2]   Generalized privacy amplification [J].
Bennett, CH ;
Brassard, G ;
Crepeau, C ;
Maurer, UM .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1995, 41 (06) :1915-1923
[3]   PRIVACY AMPLIFICATION BY PUBLIC DISCUSSION [J].
BENNETT, CH ;
BRASSARD, G ;
ROBERT, JM .
SIAM JOURNAL ON COMPUTING, 1988, 17 (02) :210-229
[4]  
Bloch M., 2006, LDPC BASED GAUSSIAN, P116
[5]   Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation [J].
Chung, SY ;
Richardson, TJ ;
Urbanke, RL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (02) :657-670
[6]  
Fan Z. Y., 2009, IEEE IPDPS, P1
[7]   Quasi-cyclic low-density parity-check codes from circulant permutation matrices [J].
Fossorier, MPC .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) :1788-1793
[8]   Quantum cryptography [J].
Gisin, N ;
Ribordy, GG ;
Tittel, W ;
Zbinden, H .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :145-195
[9]   Quantum key distribution using gaussian-modulated coherent states [J].
Grosshans, F ;
Van Assche, G ;
Wenger, J ;
Brouri, R ;
Cerf, NJ ;
Grangier, P .
NATURE, 2003, 421 (6920) :238-241
[10]  
Grosshans F., ARXIVQUANTPH0204127V