Least Area Planes in Hyperbolic 3-space Are Properly Embedded

被引:5
作者
Coskunuzer, Baris [1 ]
机构
[1] Koe Univ, Dept Math, TR-34450 Istanbul, Turkey
关键词
asymptotic plateau problem; properly embedded; least area plane; SPACE; HYPERSURFACES; MANIFOLDS; REGULARITY; EXISTENCE; SURFACES; TOPOLOGY;
D O I
10.1512/iumj.2009.58.3447
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that if Sigma is an embedded least area (area minimizing) plane in H(3) whose asymptotic boundary is a simple closed curve with at least one smooth point, then Sigma is properly embedded in H(3).
引用
收藏
页码:381 / 392
页数:12
相关论文
共 15 条
[1]   COMPLETE MINIMAL HYPERSURFACES IN HYPERBOLIC N-MANIFOLDS [J].
ANDERSON, MT .
COMMENTARII MATHEMATICI HELVETICI, 1983, 58 (02) :264-290
[2]   COMPLETE MINIMAL VARIETIES IN HYPERBOLIC SPACE [J].
ANDERSON, MT .
INVENTIONES MATHEMATICAE, 1982, 69 (03) :477-494
[3]   The Calabi-Yau conjectures for embedded surfaces [J].
Colding, Tobias H. ;
Minicozzi, William P., II .
ANNALS OF MATHEMATICS, 2008, 167 (01) :211-243
[4]   Uniform 1-cochains and genuine laminations [J].
Coskunuzer, B .
TOPOLOGY, 2006, 45 (04) :751-784
[5]   Generic uniqueness of least area planes in hyperbolic space [J].
Coskunuzer, B .
GEOMETRY & TOPOLOGY, 2006, 10 :401-412
[6]  
Coskunuzer B, 2008, P AM MATH SOC, V136, P1427
[7]  
Epstein D. B. A., 1987, LONDON MATH SOC LECT, V111, P113
[9]   REGULARITY AT INFINITY FOR AREA-MINIMIZING HYPERSURFACES IN HYPERBOLIC SPACE [J].
HARDT, R ;
LIN, FH .
INVENTIONES MATHEMATICAE, 1987, 88 (01) :217-224
[10]   INTERSECTIONS OF LEAST AREA SURFACES [J].
HASS, J .
PACIFIC JOURNAL OF MATHEMATICS, 1992, 152 (01) :119-123