Paramagnetic hollow silica nanospheres for in vivo targeted ultrasound and magnetic resonance imaging

被引:69
作者
An, Lu [1 ,2 ]
Hu, He [1 ,2 ]
Du, Jing [3 ]
Wei, Jie [1 ,2 ]
Wang, Li [1 ,2 ]
Yang, Hong [1 ,2 ]
Wu, Dongmei [4 ]
Shi, Haili [1 ,2 ]
Li, Fenghua [3 ]
Yang, Shiping [1 ,2 ]
机构
[1] Shanghai Normal Univ, Key Lab Resource Chem, Educ Minist, Shanghai 200234, Peoples R China
[2] Shanghai Normal Univ, Shanghai Key Lab Rare Earth Funct Mat, Shanghai 200234, Peoples R China
[3] Shanghai Jiao Tong Univ, Renji Hosp, Sch Med, Dept Ultrasound, Shanghai 200127, Peoples R China
[4] E China Normal Univ, Dept Phys, Shanghai Key Lab Magnet Resonance, Shanghai 200062, Peoples R China
基金
中国国家自然科学基金;
关键词
Hollow silica nanospheres; Ultrasound imaging; Magnetic resonance imaging; Biodistribution; Toxicity; CONTRAST AGENTS; HIGH-PERFORMANCE; QUANTUM DOTS; NANOPARTICLES; MRI; BIODISTRIBUTION; NANOCOMPOSITES; MICROBUBBLES; NANOCAPSULES; TOXICITY;
D O I
10.1016/j.biomaterials.2014.03.030
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A series of hollow silica nanospheres (HSNSs) with sizes ranging from 100 to 400 nm were synthesized and used for primary ultrasound imaging (US) efficiency assessment. The 400 nm HSNSs were chosen as platform for conjugation with Gd-DTPA and cyclo-arginine-glycine-aspartic acid c(RGD) peptide to construct US and magnetic resonance imaging (MRI) dual-modal contrast agents (CAs): [HSNSs@(DTPA-Gd)-RGD]. The obtained CAs displayed good physiological stability, low cytotoxicity and negligible hemolytic activity in vitro. Furthermore, the passive accumulation and active-targeting of the HSNSs in the tumor site of mice was demonstrated by US and MR imaging, respectively. The qualitative and quantitative biodistribution of the HSNSs showed that they mainly accumulated in the tissues of liver, lung, tumor after intravenous administration and then be excreted from feces. In addition, histological, hematological, blood and biochemical analysis were used to further study toxicity of the HSNSs, and all results indicated that there were no covert toxicity of HSNSs in mice after long exposure times. Findings from this study indicated that the silica-based paramagnetic HSNSs can be used as a platform for longterm targeted imaging and therapy studies safely in vivo. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:5381 / 5392
页数:12
相关论文
共 58 条
[1]   Lanthanide(III) chelates for NMR biomedical applications [J].
Aime, S ;
Botta, M ;
Fasano, M ;
Terreno, E .
CHEMICAL SOCIETY REVIEWS, 1998, 27 (01) :19-29
[2]   Bioinspired Synthesis and Characterization of Gadolinium-Labeled Magnetite Nanoparticles for Dual Contrast T1- and T2-Weighted Magnetic Resonance Imaging [J].
Bae, Ki Hyun ;
Kim, Young Beom ;
Lee, Yuhan ;
Hwang, JinYoung ;
Park, HyunWook ;
Park, Tae Gwan .
BIOCONJUGATE CHEMISTRY, 2010, 21 (03) :505-512
[3]   Cytotoxicity of silica nanoparticles through exocytosis of von Willebrand factor and necrotic cell death in primary human endothelial cells [J].
Bauer, Alexander T. ;
Strozyk, Elwira A. ;
Gorzelanny, Christian ;
Westerhausen, Christoph ;
Desch, Anna ;
Schneider, Matthias F. ;
Schneider, Stefan W. .
BIOMATERIALS, 2011, 32 (33) :8385-8393
[4]   Preparation of peptide-conjugated quantum dots for tumor vasculature-targeted imaging [J].
Cai, Weibo ;
Chen, Xiaoyuan .
NATURE PROTOCOLS, 2008, 3 (01) :89-96
[5]   In vivo near-infrared fluorescence imaging of integrin a,αvβ3 in brain tumor xenografts [J].
Chen, XY ;
Conti, PS ;
Moats, RA .
CANCER RESEARCH, 2004, 64 (21) :8009-8014
[6]   Manganese oxide-based multifunctionalized mesoporous silica nanoparticles for pH-responsive MRI, ultrasonography and circumvention of MDR in cancer cells [J].
Chen, Yu ;
Yin, Qi ;
Ji, Xiufeng ;
Zhang, Shengjian ;
Chen, Hangrong ;
Zheng, Yuanyi ;
Sun, Yang ;
Qu, Haiyun ;
Wang, Zheng ;
Li, Yaping ;
Wang, Xia ;
Zhang, Kun ;
Zhang, Linlin ;
Shi, Jianlin .
BIOMATERIALS, 2012, 33 (29) :7126-7137
[7]   Multifunctional Mesoporous Composite Nanocapsules for Highly Efficient MRI-Guided High-Intensity Focused Ultrasound Cancer Surgery [J].
Chen, Yu ;
Chen, Hangrong ;
Sun, Yang ;
Zheng, Yuanyi ;
Zeng, Deping ;
Li, Faqi ;
Zhang, Shengjian ;
Wang, Xia ;
Zhang, Kun ;
Ma, Ming ;
He, Qianjun ;
Zhang, Linlin ;
Shi, Jianlin .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (52) :12505-12509
[8]   Design of gold nanoparticles for magnetic resonance imaging [J].
Debouttiere, Pierre-Jean ;
Roux, Stephane ;
Vocanson, Francis ;
Billotey, Claire ;
Beuf, Olivier ;
Favre-Reguillon, Alain ;
Lin, Yi ;
Pellet-Rostaing, Stephane ;
Lamartine, Roger ;
Perriat, Pascal ;
Tillement, Olivier .
ADVANCED FUNCTIONAL MATERIALS, 2006, 16 (18) :2330-2339
[9]   A novel method for the fabrication of monodisperse hollow silica spheres [J].
Deng, Ziwei ;
Chen, Min ;
Zhou, Shuxue ;
You, Bo ;
Wu, Limin .
LANGMUIR, 2006, 22 (14) :6403-6407
[10]   Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution [J].
Dobrovolskaia, Marina A. ;
Aggarwal, Parag ;
Hall, Jennifer B. ;
McNeil, Scott E. .
MOLECULAR PHARMACEUTICS, 2008, 5 (04) :487-495