Intrinsic geometry of oriented congruences in three dimensions

被引:5
作者
Hill, C. Denson [2 ]
Nurowski, Pawel [1 ]
机构
[1] Uniwersytet Warszawski, Inst Fizyki Teoretycznej, Warsaw, Poland
[2] SUNY Stony Brook, Dept Math, Stony Brook, NY 11794 USA
关键词
Special CR manifolds; Local invariants; Bach-flat Lorentzian metrics; EINSTEIN EQUATIONS; METRICS; SPACES;
D O I
10.1016/j.geomphys.2008.10.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Starting from the classical notion of an oriented congruence (i.e. a foliation by oriented curves) in R-3, we abstract the notion of an oriented congruence structure. This is a 3-dimensional CR manifold (M, H, J) with a preferred splitting of the tangent space TM = V circle plus H. We find all local invariants of such structures using Cartan's equivalence method refining Cartan's classification of 3-dimensional CR structures. We use these invariants and perform Fefferman like Constructions, to obtain interesting Lorentzian metrics in four dimensions, which include explicit Ricci-flat and Einstein metrics, as well as not conformally Einstein Bach-flat metrics. (C) 2009 Published by Elsevier B.V.
引用
收藏
页码:133 / 172
页数:40
相关论文
共 20 条
[1]  
[Anonymous], EXACT SOLUTIONS EINS
[2]   CONFORMAL GRAVITY, THE EINSTEIN EQUATIONS AND SPACES OF COMPLEX NULL GEODESICS [J].
BASTON, RJ ;
MASON, LJ .
CLASSICAL AND QUANTUM GRAVITY, 1987, 4 (04) :815-826
[3]  
BIANCHI L, 1898, SOC ITAL SCI MEM MAT, V11, P267
[4]  
Cartan E., 1932, ANN SCUOLA NORM SCI, V1, P333
[5]  
Cartan E., 1932, Annali di Matematica Pura ed Applicata, V11, P17, DOI [10.1007/BF02417822, DOI 10.1007/BF02417822]
[6]  
FEFFERMAN C, 1976, ANN MATH, V104, P393, DOI 10.2307/1970961
[7]   MONGE-AMPERE EQUATIONS, BERGMAN KERNEL, AND GEOMETRY OF PSEUDOCONVEX DOMAINS [J].
FEFFERMAN, CL .
ANNALS OF MATHEMATICS, 1976, 103 (02) :395-416
[8]   Obstructions to conformally Einstein metrics in n dimensions [J].
Gover, AR ;
Nurowski, P .
JOURNAL OF GEOMETRY AND PHYSICS, 2006, 56 (03) :450-484
[9]  
HILL CD, 2009, INDIANA U M IN PRESS
[10]  
Kobayashi S., 1995, Transformation Groups in Differential Geometry