Multi-Anisotropic Gevrey Regularity of Hypoelliptic Operators

被引:0
作者
Bouzar, C. [1 ]
Dali, A. [2 ]
机构
[1] Oran Essenia Univ, Dept Math, Oran, Algeria
[2] Ctr Univ Bechar, Inst Sci exactes, Bechar, Algeria
来源
NEW DEVELOPMENTS IN PSEUDO-DIFFERENTIAL OPERATORS | 2009年 / 189卷
关键词
Hypoelliptic operators; Gevrey regularity; Multi-anisotropic Gevrey spaces; Newton polyhedron; Multi-quasiellipticity; Gevrey vectors;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show a multi-anisotropic Gevrey regularity of solutions of hypoelliptic equations. This result is a precision of a classical result of Hormander
引用
收藏
页码:265 / +
页数:2
相关论文
共 10 条
[1]  
[Anonymous], 1990, The analysis of linear partial differential operators
[2]  
[Anonymous], 1993, LINEAR PARTIAL DIFFE, DOI DOI 10.1142/1550
[3]  
[Anonymous], REND SEM MAT U POLIT
[4]   Gevrey vectors of multi-quasi-elliptic systems [J].
Bouzar, C ;
Chaili, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (05) :1565-1572
[5]  
GINDIKIN SG, 1992, METHOD NEWTON POLYHE
[6]  
HAKOBYAN GH, 2003, REND SEM MAT U POL T, V61, P443
[7]  
HOrmander L., 1969, Linear Partial Differential Operators, V3rd
[8]  
Joran Friberg, 1967, ANN SCUOLA NORM SUPE, V21, P239
[9]  
Mikchailov V.P., 1967, P STEKLOV I MATH, V91, P59
[10]  
ZANGHIRATI L, 1980, B UMI S, P177