A note on coloring line arrangements

被引:0
作者
Ackerman, Eyal [1 ]
Pach, Janos [2 ,3 ]
Pinchasi, Rom [4 ]
Radoicic, Rados [5 ]
Toth, Geza [3 ]
机构
[1] Univ Haifa, Dept Math Phys & Comp Sci, IL-36006 Tivon, Israel
[2] Ecole Polytech Fed Lausanne, CH-1015 Lausanne, Switzerland
[3] Alfred Renyi Inst, Budapest, Hungary
[4] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[5] CUNY, Baruch Coll, Dept Math, New York, NY 10021 USA
基金
瑞士国家科学基金会;
关键词
Arrangements of lines; chromatic number; sparse hypergraphs; SETS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that the lines of every arrangement of n lines in the plane can be colored with O(root n/log n) colors such that no face of the arrangement is monochromatic. This improves a bound of Bose et al. by a circle minus(root/log n) factor. Any further improvement on this bound would also improve the best known lower bound on the following problem of Erdos: estimate the maximum number of points in general position within a set of n points containing no four collinear points.
引用
收藏
页数:4
相关论文
共 5 条
  • [1] Bose P., 2013, COMPUTATIONAL GEOMET, V15, P139
  • [2] Bose P., 2012, COMPUTATIONAL GEOMET, P89
  • [3] De Berg M., 2008, Computational Geometry: Algorithms and Applications, V17
  • [4] FUREDI Z, 1991, SIAM J DISCRETE MATH, V4, P196
  • [5] On Independent Sets in Hypergraphs
    Kostochka, Alexandr
    Mubayi, Dhruv
    Verstraete, Jacques
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2014, 44 (02) : 224 - 239