Evolutionary hierarchical time series clustering

被引:0
作者
Chis, Monica [1 ]
Grosan, Crina [2 ]
机构
[1] Avram Iancu Univ, Cluj Napoca, Romania
[2] Univ Babes Bolyai, R-3400 Cluj Napoca, Romania
来源
ISDA 2006: SIXTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 1 | 2006年
关键词
time series; hierarchical clustering; evolutionary computation; evolutionary hierarchical clustering;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Time series clustering is an important topic, particularly for similarity search amongst long time series such as those arising in bioinformatics. In this paper a new evolutionary algorithm for detecting the hierarchical structure of an input time series data set is proposed. A new linear representation of the cluster structure within the data set is used. Proposed algorithm uses mutation and crossover as (search) variation operators. A new fitness function is proposed.
引用
收藏
页码:451 / 455
页数:5
相关论文
共 10 条
[1]  
AGGARWAL CC, 2001, P 8 INT C DAT THEOR, P420
[2]  
Bradley P. S., 1998, Proceedings Fourth International Conference on Knowledge Discovery and Data Mining, P9
[3]  
BRADLEY PS, 1998, P 15 INT C MACH LEAR, P91
[4]  
CHIS M, 2002, SEM COMP SCI, P12
[5]  
CHIS M, 2004, ADV DATA MINING KNOW
[6]  
DUMITRESCU D, 2000, STUDIA BABES BOLYAI
[7]  
KEOGH E, 2003, 3 IEEE INT C DAT MIN
[8]  
MICHALEWICZ Z, 1992, GENETIC ALGORITHM PL
[9]   In search of optimal clusters using genetic algorithms [J].
Murthy, CA ;
Chowdhury, N .
PATTERN RECOGNITION LETTERS, 1996, 17 (08) :825-832
[10]  
ZHANG H, 2004, EVOLUTIONARY K MEANS