Stress in a Stimuli-Responsive Polymer Brush

被引:8
|
作者
Manav, M. [1 ]
Ponga, M. [2 ]
Phani, A. Srikantha [2 ]
机构
[1] CALTECH, Grad Aerosp Labs, Pasadena, CA 91125 USA
[2] Univ British Columbia, Mech Engn, Vancouver, BC V6T 1Z4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
CONSISTENT-FIELD THEORY; POLY(N-ISOPROPYLACRYLAMIDE); COLLAPSE; TRANSITIONS; ADSORPTION; ACTUATION; SURFACE; TEMPERATURE; DEPENDENCE; BEHAVIOR;
D O I
10.1021/acs.macromol.0c01783
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
This work studies the stress in stimuli-responsive planar polymer brushes of neutral water-soluble polymers with low to very high graft densities using strong stretching theory (SST). SST with the Langevin force-extension relation for a polymer chain is extended to the study of stimuli-responsive brushes. The stress profile and other structural properties of a poly(N-isopropylacrylamide) (PNIPAm) brush are then obtained using the extended SST and an empirical Flory-Huggins parameter. The swelling ratio predicted by our model is in good qualitative agreement with experimental measurements from the literature. Our model predicts that the stress in a PNIPAm brush is inhomogeneous and compressive at all temperatures and graft densities. The resultant stress is predicted to increase in magnitude with increasing graft density. A temperature increase results in a decrease in the resultant stress magnitude in low graft density brushes but a mild increase in high density brushes. This contrasting behavior arises from the minimum in the interaction free energy density versus polymer volume fraction curve for a PNIPAm solution at a large volume fraction and the stiffening of chains due to finite extensibility. Our results indicate that the ability to tune the resultant stress by changing the temperature diminishes with increasing graft density.
引用
收藏
页码:170 / 182
页数:13
相关论文
共 50 条
  • [21] Stimuli-responsive gold nanoparticles/polymer assemblies
    Zhu, Zhichen
    Sukhishvili, Svetlana
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2010, 240
  • [22] Stimuli-responsive polymer brushes: Design and applications
    Minko, Sergiy
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [23] Emerging applications of stimuli-responsive polymer materials
    Stuart, Martien A. Cohen
    Huck, Wilhelm T. S.
    Genzer, Jan
    Mueller, Marcus
    Ober, Christopher
    Stamm, Manfred
    Sukhorukov, Gleb B.
    Szleifer, Igal
    Tsukruk, Vladimir V.
    Urban, Marek
    Winnik, Francoise
    Zauscher, Stefan
    Luzinov, Igor
    Minko, Sergiy
    NATURE MATERIALS, 2010, 9 (02) : 101 - 113
  • [24] Stimuli-Responsive Buckling Mechanics of Polymer Films
    Chen, Dayong
    Yoon, Jinhwan
    Chandra, Dinesh
    Crosby, Alfred J.
    Hayward, Ryan C.
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2014, 52 (22) : 1441 - 1461
  • [25] Stimuli-Responsive Polymer Actuator for Soft Robotics
    Kim, Seewoo
    Lee, Sang-Nam
    Melvin, Ambrose Ashwin
    Choi, Jeong-Woo
    POLYMERS, 2024, 16 (18)
  • [26] Recent advance in functionalized mesoporous silica nanoparticles with stimuli-responsive polymer brush for controlled drug delivery
    Alfhaid, Latifah Hamad K.
    SOFT MATERIALS, 2022, 20 (03) : 364 - 378
  • [27] Adsorption of enzymes to stimuli-responsive polymer brushes: Influence of brush conformation on adsorbed amount and biocatalytic activity
    Koenig, Meike
    Bittrich, Eva
    Koenig, Ulla
    Rajeev, Bhadra Lakshmi
    Mueller, Martin
    Eichhorn, Klaus-Jochen
    Thomas, Sabu
    Stamm, Manfred
    Uhlmann, Petra
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2016, 146 : 737 - 745
  • [28] Stimuli responsiveness, propulsion and application of the stimuli-responsive polymer based micromotor
    Wang, Dalei
    Han, Xiaoxia
    Dong, Bin
    Shi, Feng
    APPLIED MATERIALS TODAY, 2021, 25
  • [29] Stimuli-responsive biodegradable polymer nanoparticles for theranostic applications
    Wang, Changchun
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [30] Stimuli-responsive non-covalent polymer networks
    Weder, Christoph
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256