Stress in a Stimuli-Responsive Polymer Brush

被引:8
|
作者
Manav, M. [1 ]
Ponga, M. [2 ]
Phani, A. Srikantha [2 ]
机构
[1] CALTECH, Grad Aerosp Labs, Pasadena, CA 91125 USA
[2] Univ British Columbia, Mech Engn, Vancouver, BC V6T 1Z4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
CONSISTENT-FIELD THEORY; POLY(N-ISOPROPYLACRYLAMIDE); COLLAPSE; TRANSITIONS; ADSORPTION; ACTUATION; SURFACE; TEMPERATURE; DEPENDENCE; BEHAVIOR;
D O I
10.1021/acs.macromol.0c01783
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
This work studies the stress in stimuli-responsive planar polymer brushes of neutral water-soluble polymers with low to very high graft densities using strong stretching theory (SST). SST with the Langevin force-extension relation for a polymer chain is extended to the study of stimuli-responsive brushes. The stress profile and other structural properties of a poly(N-isopropylacrylamide) (PNIPAm) brush are then obtained using the extended SST and an empirical Flory-Huggins parameter. The swelling ratio predicted by our model is in good qualitative agreement with experimental measurements from the literature. Our model predicts that the stress in a PNIPAm brush is inhomogeneous and compressive at all temperatures and graft densities. The resultant stress is predicted to increase in magnitude with increasing graft density. A temperature increase results in a decrease in the resultant stress magnitude in low graft density brushes but a mild increase in high density brushes. This contrasting behavior arises from the minimum in the interaction free energy density versus polymer volume fraction curve for a PNIPAm solution at a large volume fraction and the stiffening of chains due to finite extensibility. Our results indicate that the ability to tune the resultant stress by changing the temperature diminishes with increasing graft density.
引用
收藏
页码:170 / 182
页数:13
相关论文
共 50 条
  • [1] Stimuli-responsive polymer as gate dielectric for organic transistor sensors
    Rullyani, Cut
    Singh, Mriganka
    Li, Sheng-Han
    Sung, Chao-Feng
    Lin, Hong-Cheu
    Chu, Chih-Wei
    ORGANIC ELECTRONICS, 2020, 85
  • [2] Fine-Tuning the Structure of Stimuli-Responsive Polymer Films by Hydrostatic Pressure and Temperature
    Reinhardt, Matthias
    Dzubiella, Joachim
    Trapp, Marcus
    Gutfreund, Philipp
    Kreuzer, Martin
    Groeschel, Andre H.
    Mueller, Axel H. E.
    Ballauff, Matthias
    Steitz, Roland
    MACROMOLECULES, 2013, 46 (16) : 6541 - 6547
  • [3] Tethered Stimuli-Responsive Polymer Films
    Walters, Keisha B.
    SMART COATINGS III, 2010, 1050 : 21 - 30
  • [4] Stimuli-responsive, mechanically-adaptive polymer nanocomposites
    Hsu, Lorraine
    Weder, Christoph
    Rowan, Stuart J.
    JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (09) : 2812 - 2822
  • [5] Emerging applications of stimuli-responsive polymer materials
    Stuart, Martien A. Cohen
    Huck, Wilhelm T. S.
    Genzer, Jan
    Mueller, Marcus
    Ober, Christopher
    Stamm, Manfred
    Sukhorukov, Gleb B.
    Szleifer, Igal
    Tsukruk, Vladimir V.
    Urban, Marek
    Winnik, Francoise
    Zauscher, Stefan
    Luzinov, Igor
    Minko, Sergiy
    NATURE MATERIALS, 2010, 9 (02) : 101 - 113
  • [6] Stimuli-responsive photonic polymer coatings
    Stumpel, Jelle E.
    Broer, Dirk J.
    Schenning, Albertus P. H. J.
    CHEMICAL COMMUNICATIONS, 2014, 50 (100) : 15839 - 15848
  • [7] Viscoelastic Properties of Stimuli-Responsive Transient Polymer Networks
    Tanaka, Fumihiko
    MACROMOLECULES, 2024, 57 (22) : 10600 - 10614
  • [8] Multiple microarrays of non-adherent cells on a single 3D stimuli-responsive binary polymer-brush pattern
    Hou, Jianwen
    Chen, Runhai
    Liu, Jingchuan
    Wang, Haozheng
    Shi, Qiang
    Xin, Zhirong
    Wong, Shing-Chung
    Yin, Jinghua
    JOURNAL OF MATERIALS CHEMISTRY B, 2018, 6 (29) : 4792 - 4798
  • [9] Stress in a polymer brush
    Manav, M.
    Ponga, M.
    Phani, A. Srikantha
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2019, 127 : 125 - 150
  • [10] Spin-Casting Polymer Brush Films for Stimuli-Responsive and Anti-Fouling Surfaces
    Xu, Binbin
    Feng, Chun
    Hu, Jianhua
    Shi, Ping
    Gu, Guangxin
    Wang, Lei
    Huang, Xiaoyu
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (10) : 6685 - 6692