Computation of fluid flow in double sided cross-shaped lid-driven cavities using Lattice Boltzmann method

被引:30
作者
Bhopalam, Sthavishtha R. [1 ]
Perumal, D. Arumuga [1 ]
Yadav, Ajay Kumar [1 ]
机构
[1] Natl Inst Technol Karnataka, Dept Mech Engn, Mangalore 575025, India
关键词
Double-sided cross-shaped lid-driven cavity; Lattice Boltzmann method; Two relaxation time; Antiparallel wall motion; Parallel wall motion; Oscillating lid; TAYLOR-SERIES EXPANSION; INCOMPRESSIBLE-FLOW; NATURAL-CONVECTION; STABILITY ANALYSIS; VISCOUS-FLOW; SIMULATION; STEADY; PRESSURE; VELOCITY;
D O I
10.1016/j.euromechflu.2018.01.006
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This work implements Lattice Boltzmann method to compute flows in double-sided cross-shaped lid driven cavities. Firstly, a complicated geometry which is a symmetrized version of the staggered lid-driven cavity namely, the double-sided cross-shaped lid-driven cavity with antiparallel uniform wall motion is studied employing Single as well as Two Relaxation time models. The streamline patterns and vorticity contours obtained for low to moderate Reynolds numbers (150-1000) are compared with published results and found to be in good accordance. Next, this code is extended to simulate flows in a double-sided cross-shaped lid-driven cavity with parallel uniform wall motion. The effect of three dimensionality is also studied for low Reynolds numbers. Lattice Boltzmann method is then used to investigate the oscillating double-sided cross-shaped lid-driven cavity with antiparallel and parallel wall motions. The movement and formation of primary and secondary vortices have been well captured with the variation of Reynolds numbers and oscillating frequencies for uniform and oscillating wall motions. Reasonable agreements with the established results have been observed for the double-sided cross-shaped cavity with uniform wall motions, while new results have been obtained in the case of oscillating wall motions. (C) 2018 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:46 / 72
页数:27
相关论文
共 56 条
[1]   GLOBAL STABILITY OF A LID-DRIVEN CAVITY WITH THROUGHFLOW - FLOW VISUALIZATION STUDIES [J].
AIDUN, CK ;
TRIANTAFILLOPOULOS, NG ;
BENSON, JD .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1991, 3 (09) :2081-2091
[2]   Accurate three-dimensional lid-driven cavity flow [J].
Albensoeder, S ;
Kuhlmann, HC .
JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 206 (02) :536-558
[3]  
[Anonymous], 2010, Computational Fluid Dynamics
[4]  
Arumuga Perumal D., 2013, WORLD J MODELING SIM, V9, P277
[5]  
Bogatyrev V. Ya., 1978, Fluid Mechanics - Soviet Research, V7, P101
[6]   ANALYTICAL AND NUMERICAL STUDIES OF STRUCTURE OF STEADY SEPARATED FLOWS [J].
BURGGRAF, OR .
JOURNAL OF FLUID MECHANICS, 1966, 24 :113-&
[7]   Numerical simulation of periodic mixed convective heat transfer in a rectangular cavity with a vibrating lid [J].
Chen, Chin-Lung ;
Cheng, Chin-Hsiang .
APPLIED THERMAL ENGINEERING, 2009, 29 (14-15) :2855-2862
[8]   NUMERICAL EXPERIMENTS WITH THE LID-DRIVEN CAVITY FLOW PROBLEM [J].
CORTES, AB ;
MILLER, JD .
COMPUTERS & FLUIDS, 1994, 23 (08) :1005-1027
[9]   Stability analysis in spanwise-periodic double-sided lid-driven cavity flows with complex cross-sectional profiles [J].
de Vicente, Javier ;
Rodriguez, Daniel ;
Theofilis, Vassilis ;
Valero, Eusebio .
COMPUTERS & FLUIDS, 2011, 43 (01) :143-153
[10]   Topological flow structures in an L-shaped cavity with horizontal motion of the upper lid [J].
Deliceoglu, A. ;
Aydin, S. Han .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 :937-943