Acoustic VTI modeling using high-order finite differences

被引:60
作者
Hestholm, Stig [1 ]
机构
[1] CGGVeritas Serv, Bergen, Norway
关键词
TRANSVERSELY ISOTROPIC MEDIA; ANISOTROPIC MEDIA; WAVE-EQUATION;
D O I
10.1190/1.3157242
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Two second-order wave equations for acoustic vertical transversely isotropic (VTI) media are transformed to six first-order coupled partial differential equations for a more straighforward numerical implementation of the derivatives. The resulting first-order equations have a more natural form for discretization by any finite-difference, pseudospectral, or finite-element method. I discretized the new equations by high-order finite differences and used synthetic seismograms and snapshots for anisotropic and isotropic cases. The relative merits of placing the source deep and close to a free surface are assessed, illustrating advantages of exciting the source inside or outside of a near-surface, thin, isotropic layer. Results show that traveltimes from deep seismic reflectors can remain virtually unaffected when near-surface isotropic layers are included in acoustic VTI media.
引用
收藏
页码:T67 / T73
页数:7
相关论文
共 18 条
[1]   Acoustic approximations for processing in transversely isotropic media [J].
Alkhalifah, T .
GEOPHYSICS, 1998, 63 (02) :623-631
[2]   An acoustic wave equation for anisotropic media [J].
Alkhalifah, T .
GEOPHYSICS, 2000, 65 (04) :1239-1250
[3]   An acoustic wave equation for orthorhombic anisotropy [J].
Alkhalifah, T .
GEOPHYSICS, 2003, 68 (04) :1169-1172
[4]   VELOCITY ANALYSIS FOR TRANSVERSELY ISOTROPIC MEDIA [J].
ALKHALIFAH, T ;
TSVANKIN, I .
GEOPHYSICS, 1995, 60 (05) :1550-1566
[5]   A NONREFLECTING BOUNDARY-CONDITION FOR DISCRETE ACOUSTIC AND ELASTIC WAVE-EQUATIONS [J].
CERJAN, C ;
KOSLOFF, D ;
KOSLOFF, R ;
RESHEF, M .
GEOPHYSICS, 1985, 50 (04) :705-708
[6]   Partial differential equations of mathematical physics [J].
Courant, R ;
Friedrichs, K ;
Lewy, H .
MATHEMATISCHE ANNALEN, 1928, 100 :32-74
[7]  
DU X, 2008, 70 ANN TECH C EXH EA
[8]  
FORNBERG B, 1988, MATH COMPUT, V51, P699, DOI 10.1090/S0025-5718-1988-0935077-0
[9]   Shear waves in acoustic anisotropic media [J].
Grechka, V ;
Zhang, LB ;
Rector, JW .
GEOPHYSICS, 2004, 69 (02) :576-582
[10]   3D free-boundary conditions for coordinate-transform finite-difference seismic modelling [J].
Hestholm, S ;
Ruud, B .
GEOPHYSICAL PROSPECTING, 2002, 50 (05) :463-474