The evolution of cyclodextrin glucanotransferase product specificity

被引:69
作者
Kelly, Ronan M. [1 ]
Dijkhuizen, Lubbert [1 ]
Leemhuis, Hans [1 ]
机构
[1] Univ Groningen, Groningen Biomol Sci & Biotechnol Inst, Ctr Carbohydrate Bioproc, NL-9751 NN Haren, Netherlands
关键词
Protein evolution; CGTase; alpha-Amylase; Reaction specificity; Protein stability; BACILLUS-CIRCULANS STRAIN-251; MALTOGENIC ALPHA-AMYLASE; X-RAY-STRUCTURE; SUBSTRATE-BINDING; DIRECTED EVOLUTION; GAMMA-CYCLODEXTRIN; NUCLEOTIDE-SEQUENCE; STARCH HYDROLASE; ACTIVE-CENTER; GLYCOSYLTRANSFERASE;
D O I
10.1007/s00253-009-1988-6
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Cyclodextrin glucanotransferases (CGTases) have attracted major interest from industry due to their unique capacity of forming large quantities of cyclic alpha-(1,4)-linked oligosaccharides (cyclodextrins) from starch. CGTases produce a mixture of cyclodextrins from starch consisting of 6 (alpha), 7 (beta) and 8 (gamma) glucose units. In an effort to identify the structural factors contributing to the evolutionary diversification of product specificity amongst this group of enzymes, we selected nine CGTases from both mesophilic, thermophilic and hyperthermophilic organisms for comparative product analysis. These enzymes displayed considerable variation regarding thermostability, initial rates, percentage of substrate conversion and ratio of alpha-, beta- and gamma-cyclodextrins formed from starch. Sequence comparison of these CGTases revealed that specific incorporation and/or substitution of amino acids at the substrate binding sites, during the evolutionary progression of these enzymes, resulted in diversification of cyclodextrin product specificity.
引用
收藏
页码:119 / 133
页数:15
相关论文
共 65 条
[1]   Three-way stabilization of the covalent intermediate in amylomaltase, an α-amylase-like transglycosylase [J].
Barends, Thomas R. M. ;
Bultema, Jelle B. ;
Kaper, Thijs ;
van der Maarel, Marc J. E. C. ;
Dijkhuizen, Lubbert ;
Dijkstra, Bauke W. .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2007, 282 (23) :17242-17249
[2]   Conversion of the maltogenic α-amylase Novamyl into a CGTase [J].
Beier, L ;
Svendsen, A ;
Andersen, C ;
Frandsen, TP ;
Borchert, TV ;
Cherry, JR .
PROTEIN ENGINEERING, 2000, 13 (07) :509-513
[3]   Physics and evolution of thermophilic adaptation [J].
Berezovsky, IN ;
Shakhnovich, EI .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (36) :12742-12747
[4]   Industrial carbohydrate biotransformations [J].
Buchholz, K. ;
Seibel, J. .
CARBOHYDRATE RESEARCH, 2008, 343 (12) :1966-1979
[5]   MECHANISM OF ENZYME STABILIZATION [J].
COMBES, D ;
YOOVIDHYA, T ;
GIRBAL, E ;
WILLEMOT, RM ;
MONSAN, P .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1987, 501 :59-62
[6]  
Coutinho PM., 1999, CARBOHYDRATE ACTIVE
[7]   X-ray structure of Novamyl, the five-domain "maltogenic" α-amylase from Bacillus stearothermophilus:: Maltose and acarbose complexes at 1.7 Å resolution [J].
Dauter, Z ;
Dauter, M ;
Brzozowski, AM ;
Christensen, S ;
Borchert, TV ;
Beier, L ;
Wilson, KS ;
Davies, GJ .
BIOCHEMISTRY, 1999, 38 (26) :8385-8392
[8]   Thermostability of irreversible unfolding α-amylases analyzed by unfolding kinetics [J].
Duy, C ;
Fitter, J .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (45) :37360-37365
[9]   Rational engineering of enzyme stability [J].
Eijsink, VGH ;
Bjork, A ;
Gåseidnes, S ;
Sirevåg, R ;
Synstad, B ;
van den Burg, B ;
Vriend, G .
JOURNAL OF BIOTECHNOLOGY, 2004, 113 (1-3) :105-120
[10]   UNDERSTANDING AND INCREASING PROTEIN STABILITY [J].
FAGAIN, C .
BIOCHIMICA ET BIOPHYSICA ACTA-PROTEIN STRUCTURE AND MOLECULAR ENZYMOLOGY, 1995, 1252 (01) :1-14