Silver Nanowire-Templated Molecular Nanopatterning and Nanoparticle Assembly for Surface-Enhanced Raman Scattering

被引:15
作者
Li, Zhuoyao [1 ,2 ]
Wang, Guilin [1 ,2 ]
Zhang, Chengyu [1 ,2 ]
Wei, Cong [1 ,2 ]
Wang, Xiang [1 ,2 ]
Gao, Yongqian [1 ,2 ]
Li, Hai [1 ,2 ]
Huang, Xiao [1 ,2 ]
Yuan, Haifeng [3 ]
Lu, Gang [1 ,2 ]
机构
[1] Nanjing Tech Univ NanjingTech, Key Lab Flexible Elect KLOFE, Jiangsu Natl Synergist Innovat Ctr Adv Mat SICAM, 30 South Puzhu Rd, Nanjing 211816, Jiangsu, Peoples R China
[2] Nanjing Tech Univ NanjingTech, Inst Adv Mat, Jiangsu Natl Synergist Innovat Ctr Adv Mat SICAM, 30 South Puzhu Rd, Nanjing 211816, Jiangsu, Peoples R China
[3] Katholieke Univ Leuven, Dept Chem, Celestijnenlaan 200F, B-3001 Heverlee, Belgium
基金
中国国家自然科学基金;
关键词
molecular pattern; nanopattern; silane; silver nanowire; surface-enhanced Raman scattering; GRAPHENE OXIDE; PHOTOLITHOGRAPHY; NANOLITHOGRAPHY; NANOSTRUCTURES; NANOTECHNOLOGY; ARCHITECTURES; FILMS;
D O I
10.1002/chem.201901313
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Developing simple and cost-efficient methods for fabricating molecular patterns is of great importance in the field of nanoscience and nanotechnology. Here, a simple and convenient method was developed for fabricating nanopatterns composed of positively charged silane molecules by using silver nanowires as templates. The as-obtained silane pattern copies the shape of the silver nanowires and is only 0.7 nm thick, which can later be used for templated assembly of small molecules and nanoparticles of opposite charges. As a proof of concept, the resultant assembly could be further used for surface-enhanced Raman scattering.
引用
收藏
页码:10561 / 10565
页数:5
相关论文
共 50 条
  • [1] E-beam lithography for micro-/nanofabrication
    Altissimo, Matteo
    [J]. BIOMICROFLUIDICS, 2010, 4 (02):
  • [2] Spotlight on ultrasonic fracture behaviour of nanowires: their size-dependent effect and prospect for controllable functional modification
    Dai, H.
    Wang, T. Y.
    Li, M. C.
    [J]. RSC ADVANCES, 2016, 6 (76): : 72080 - 72085
  • [3] Ordering Ag nanowire arrays by spontaneous spreading of volatile droplet on solid surface
    Dai, Han
    Ding, Ruiqiang
    Li, Meicheng
    Huang, Jinjer
    Li, Yingfeng
    Trevor, Mwenya
    [J]. SCIENTIFIC REPORTS, 2014, 4
  • [4] Nanotechnology for Multimodal Synergistic Cancer Therapy
    Fan, Wenpei
    Yung, Bryant
    Huang, Peng
    Chen, Xiaoyuan
    [J]. CHEMICAL REVIEWS, 2017, 117 (22) : 13566 - 13638
  • [5] A silver nanowire-based tip suitable for STM tip-enhanced Raman scattering
    Fujita, Yasuhiko
    Chiba, Rie
    Lu, Gang
    Horimoto, Noriko N.
    Kajimoto, Shinji
    Fukumura, Hiroshi
    Uji-, Hiroshi, I
    [J]. CHEMICAL COMMUNICATIONS, 2014, 50 (69) : 9839 - 9841
  • [6] Macroscopic Free-Standing Hierarchical 3D Architectures Assembled from Silver Nanowires by Ice Templating
    Gao, Huai-Ling
    Xu, Liang
    Long, Fei
    Pan, Zhao
    Du, Yu-Xiang
    Lu, Yang
    Ge, Jin
    Yu, Shu-Hong
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (18) : 4561 - 4566
  • [7] Gao Huai-Ling., 2014, Angewandte Chemie, V126, P4649
  • [8] Garcia R, 2014, NAT NANOTECHNOL, V9, P577, DOI [10.1038/nnano.2014.157, 10.1038/NNANO.2014.157]
  • [9] Garnett EC, 2012, NAT MATER, V11, P241, DOI [10.1038/NMAT3238, 10.1038/nmat3238]
  • [10] One-dimensional TiO2 Nanotube Photocatalysts for Solar Water Splitting
    Ge, Mingzheng
    Li, Qingsong
    Cao, Chunyan
    Huang, Jianying
    Li, Shuhui
    Zhang, Songnan
    Chen, Zhong
    Zhang, Keqin
    Al-Deyab, Salem S.
    Lai, Yuekun
    [J]. ADVANCED SCIENCE, 2017, 4 (01):